Publications

2020

Article (7)

  1. F. Hua, R. Nassif, C. Richard, H. Wang, and A. H. Sayed, “Diffusion LMS with Communication Delays: Stability and Performance Analysis”, to appear in IEEE Signal Processing Letters, 2020.[arXiv]
  2. R. Nassif, S. Vlaski, C. Richard, and A. H. Sayed, “Learning over Multitask Graphs-Part I: Stability Analysis,” to appear in IEEE Open Journal of Signal Processing, 2020.[arXiv]
  3. R. Nassif, S. Vlaski, C. Richard, and A. H. Sayed, “Learning over Multitask Graphs-Part II: Performance Analysis,” to appear in IEEE Open Journal of Signal Processing, 2020. [arXiv]
  4. R. Nassif, S. Vlaski, and A. H. Sayed, “Adaptation and learning over networks under subspace constraints–Part II: Performance Analysis,” to appear in IEEE Transactions on Signal Processing, 2020[arXiv]
  5. R. Nassif, S. Vlaski, and A. H. Sayed, “Adaptation and learning over networks under subspace constraints–Part I: Stability Analysis,” IEEE Transactions on Signal Processing,  vol. 68, Jan. 2020. [arXiv]
  6. R. Nassif, S. Vlaski, C. Richard, J. Chen, and A. H. Sayed, “Multitask Learning over Graphs,” to appear in IEEE Signal Processing Magazine,  2020. [arXiv]
  7. F. Hua, R. Nassif, C. Richard, H. Wang, and A. H. Sayed, “Online distributed learning over graphs with multitask graph-filter models,” to appear in IEEE Transactions on Signal and Information Processing over Networks,  2020. [arXiv]

Inproceedings (1)

  1. R. Nassif, S. Vlaski, C. Richard, and A. H. Sayed, “A Regularization Framework for Learning over Multitask Graphs,” Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), May 2020. [pdf]

2019

Article (1)

  1. R. Nassif, S. Vlaski, C. Richard, and A. H. Sayed, “A Regularization Framework for Learning over Multitask Graphs,” IEEE Signal Processing Letters, vol. 26, no. 2, pp. 297-301, Feb. 2019. [pdf]

Inproceedings (4)

  1. R. Nassif, S. Vlaski, and A. H. Sayed, “Distributed Learning over Networks under Subspace Constraints,”  Proc. Asilomar Conference on Signals, Systems, and ComputersPacific Grove, CA, Nov. 2019.[pdf]
  2. M. Moscu, R. Nassif, F. Hua, and C. Richard, “Apprentissage distribué de la topologie d’un graphe à partir de signaux temporels sur graphe,”  Actes du 27e Colloque GRETSI sur le Traitement du Signal et des Images, Lille, France, Aug. 2019.
  3. M. Moscu, R. Nassif, F. Hua, and C. Richard, “Learning Causal Networks Topology from Streaming Graph Signals,”  Proc. IEEE 27th European Signal Processing Conference (EUSIPCO) Coruña, Spain, 2019.[pdf]
  4. R. Nassif, S. Vlaski, and A. H. Sayed, “Distributed inference over networks under subspace constraints,”  Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)Brighton, UK, May 2019. [pdf]

2018

Inproceedings (5)

  1. F. Hua, R. Nassif, C. Richard, H. Wang, and A. H. Sayed, “Decentralized clustering for node-variant graph filtering with graph diffusion LMS,” Proc. Asilomar Conference on Signals, Systems, and ComputersPacific Grove, CA, Oct. 2018.
  2. F. Hua, R. Nassif, C. Richard, H. Wang, and A. H. Sayed, “A Preconditioned Graph Diffusion LMS for Adaptive Graph Signal Processing,” Proc. IEEE 26th European Signal Processing Conference (EUSIPCO), Rome, Italy, Sep. 2018. [pdf]
  3. R. Nassif, S. Vlaski, and A. H. Sayed, “Distributed Inference over Multitask Graphs under Smoothness,” Proc. IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Kalamata, Greece, Jun. 2018. [pdf]
  4. S. Vlaski, H. Maretic, R. Nassif, P. Frossard, and A. H. Sayed, “Online Graph Learning from Sequential Data,” Proc. IEEE Data Science Workshop, Lausanne, Switzerland, Jun. 2018.[pdf]
  5. R. Nassif, C. Richard, J. Chen, and A.H. Sayed, “Distributed diffusion adaptation over graph signals,” Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)Calgary, Alberta, Canada, Apr. 2018. [pdf]

2017

Article (1)

  1. R. Nassif, C. Richard, A. Ferrari, and A. H. Sayed, “Diffusion LMS for multitask problems with local linear equality constraints,” IEEE Transactions on Signal Processing, vol. 65, no. 19, pp. 4979-4993, Oct. 2017. [pdf] [arXiv]

Inproceedings (4)

  1. F. Hua, R. Nassif, C. Richard, H. Wang, and J. Huang, “Penalty-based multitask estimation with non-local linear equality constraints”, Proc. IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), Dec. 2017.[pdf]
  2. R. Nassif, C. Richard, J. Chen, and A. H. Sayed, “A Graph Diffusion LMS Strategy for Adaptive Graph Signal Processing,” Proc. Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, Oct. 2017.[pdf]
  3. F. Hua, R. Nassif, C. Richard, H. Wang, and J. Huang, “Penalty-based multitask distributed adaptation over networks with constraints”, Proc. Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, Oct. 2017. [pdf]
  4. R. Nassif, C. Richard, J. Chen, R. Couillet, and P. Borgnat, “Filtrage LMS sur graphe. Algorithme et analyse”, Actes du 26e Colloque GRETSI sur le Traitement du Signal et des Images, Nice, France, 2017. [pdf]

2016

Dissertation (1)

  1. R. Nassif, “Distributed adaptive estimation over multitask networks”, Ph.D. thesis, Université Côte d’Azur, 2016.

Article (2)

  1. R. Nassif, A. Ferrari, C. Richard, and A. H. Sayed, “Proximal multitask learning over networks with sparsity-inducing coregularization,”  IEEE Transactions on Signal Processing, vol. 64, no. 23, pp. 6329-6344, Dec. 2016. [pdf] [arXiv]
  2. R. Nassif, C. Richard, A. Ferrari, and A. H. Sayed, “Multitask diffusion adaptation over asynchronous networks,” IEEE Transactions on Signal Processing, vol. 64, no. 11, pp. 2835-2850, Jun. 2016. [pdf] [arXiv]

Inproceedings (2)

  1. R. Nassif, C. Richard, A. Ferrari, and A. H. Sayed, “Distributed learning over multitask networks with linearly related tasks,” Proc. Asilomar Conference on Signals, Systems, and Computers, pp. 1390-1394, Pacific Grove, CA, Nov. 2016. [pdf]
  2. R. Nassif, C. Richard, J. Chen, A. Ferrari, and A. H. Sayed, “Diffusion LMS over multitask networks with noisy links,” Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4583-4587, Shanghai, China, Mar. 2016. [pdf]

2015

Inproceedings (2)

  1. R. Nassif, C. Richard, A. Ferrari, and A. H. Sayed, “Multitask diffuion LMS with sparsity-based regularization,” Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3516-3520, Brisbane, Australia, Apr. 2015. [pdf]
  2. R. Nassif, C. Richard, and A. Ferrari, “Estimation distribuée sur les réseaux multitâches en présence d’échanges d’informations bruitées,” Actes du 25e Colloque GRETSI sur le Traitement du Signal et des Images, Lyon, France, Sep. 2015. [pdf]

2014

Inproceedings (1)

  1. R. Nassif, C. Richard, A. Ferrari, and A. H. Sayed, “Performance analysis of multitask diffusion adaptation over asynchronous networks,” Proc. Asilomar Conference on Signals, Systems, and Computers, pp. 788-792, Pacific Grove, CA, Nov. 2014. [pdf]

2013

Inproceedings (1)

  1. R. Nassif, S. Destercke, and M. H. Masson, “Classification multi-label par fonctions de croyance,” 22èmes Rencontres Francophones sur la Logique Floue et ses Applications (LFA), pp. 119-126, Reims, France, Oct. 2013. [pdf]
Skip to toolbar