
Math 220, Linear Algebra II — Spring 2024
https://sites.aub.edu.lb/kmakdisi/

Problem set 9, due Thursday, March 28 at the beginning of class

Exercises from Artin:
Chapter 8, exercises 4.12, 6.2 (see remark), 6.7, 6.18, 8.3, M.8.

Remark for 6.2: give one proof using the spectral theorem, and another without assuming that V
is finite-dimensional.

Additional Exercises (also required):

Exercise A9.1: A proof of the spectral theorem for commuting self-adjoint linear transforma-
tions, and similarly for commuting normal linear transformations (compare to Artin, Theorems 8.6.5
and 8.6.6 for a different treatment). Throughout this exercise assume that V is a finite-dimensional
complex vector space.

a) If T,U : V → V are commuting linear transformations (so T ◦U = U ◦T ), show that T and
U have a common eigenvector. (Hint: let λ be an eigenvalue of T [remember, the field of scalars
is C] and show that the nonzero eigenspace V (λ) = ker(λI − T ) is invariant under U , and hence
[why?] contains an eigenvector for U .)

b) If, furthermore, T and U are self-adjoint, show that V has an orthonormal basis of simul-
taneous eigenvectors for T and U . Generalize to an arbitrary number of commuting self-adjoint
linear transformations. Bonus: show that the result still holds over R, and, whether over R or over
C, that it still holds even if one has an infinite set of commuting self-adjoint linear transformations.

c) Back to the case of C, Assume that T is normal; this means that T and T ∗ commute. In
this case, show that there exists an orthonormal basis of eigenvectors for T . (Hint: show that
T + T ∗ and i(T − T ∗) are commuting self-adjoint linear transformations.) Bonus: generalize to an
arbitrary number of commuting normal linear transformations.

Exercise A9.2: Let V be a finite-dimensional inner product space over R (or C), and let
T : V → V be a linear transformation.

(Note: parts (c–e) of this problem are an introduction to the “singular value decomposition”,
which I encourage you to look up. The problem works just as well if T : V → W with W 6= V , but
you can stick to the case W = V .)

a) Show that v⃗ is an eigenvector of T ∗ (the adjoint of T ) if and only iff its orthogonal comple-
ment v⃗⊥ is stable under T . (Recall that this means T (v⃗⊥) ⊂ v⃗⊥.) Hint: show first that (v⃗⊥)⊥ is
the set of multiples of v⃗.

b) Show that v⃗ is an eigenvector of T ∗T if and only if T (v⃗⊥) ⊂ (T v⃗)⊥.
c) Show that there exists an orthonormal basis {v⃗i} of V such that the T (v⃗i) are all orthogonal

to each other (the T (v⃗i) need not have length 1, however, and some of them may even be zero).
Hint: T ∗T is self-adjoint.

d) Show that every n× n matrix M can be written M = U1DU2, where D is diagonal and U1

and U2 are both orthogonal (or unitary).
e) Deduce lower and upper bounds on ‖T (v⃗)‖ in terms of ‖v⃗‖ and the entries on the diagonal

of D above, where M is the matrix of T with respect to some orthonormal basis.

Exercise A9.3: On Pn, define the inner product 〈f, g〉 =
∫ 1

−1
f(x)g(x) dx. (Prove for yourself,

but do not hand in, the fact that this is positive definite.) Define T : Pn → Pn by

Tf =
d

dx

(
(1− x2)

df

dx

)
.

a) Show that T is self-adjoint with respect to this inner product.
b) What are its eigenvalues?
c) Show that for 0 ≤ k ≤ n, there exists an eigenvector Pk, of degree k and leading coefficient

1; so Pk(x) = xk + ak,k−1x
k−1 + . . . + ak,0. Show that the different Pk’s are orthogonal. What is

the eigenvalue of Pk? (For more fun: find an expression for its coefficients ak,i. Challenge: find a
nice expression for 〈Pk, Pk〉.)

d) What breaks down in each of parts 1–3, if instead of T we consider the linear transformation
f 7→ d2f/dx2?

Remark: the Pk’s are called the Legendre polynomials.

Look at, but do not hand in, the following exercises:
Chapter 8, exercises 4.13, 4.14, 6.4, 6.8, 6.19, 6.20, M.7.


