Exercises from Artin:

Chapter 8, exercises 4.12, 6.2 (see remark), $6.7,6.18,8.3$, M.8.
Remark for 6.2 : give one proof using the spectral theorem, and another without assuming that V is finite-dimensional.

Additional Exercises (also required):

Exercise A9.1: A proof of the spectral theorem for commuting self-adjoint linear transformations, and similarly for commuting normal linear transformations (compare to Artin, Theorems 8.6.5 and 8.6.6 for a different treatment). Throughout this exercise assume that V is a finite-dimensional complex vector space.
a) If $T, U: V \rightarrow V$ are commuting linear transformations (so $T \circ U=U \circ T$), show that T and U have a common eigenvector. (Hint: let λ be an eigenvalue of T remember, the field of scalars is $\mathbf{C}]$ and show that the nonzero eigenspace $V^{(\lambda)}=\operatorname{ker}(\lambda I-T)$ is invariant under U, and hence [why?] contains an eigenvector for U.)
b) If, furthermore, T and U are self-adjoint, show that V has an orthonormal basis of simultaneous eigenvectors for T and U. Generalize to an arbitrary number of commuting self-adjoint linear transformations. Bonus: show that the result still holds over \mathbf{R}, and, whether over \mathbf{R} or over \mathbf{C}, that it still holds even if one has an infinite set of commuting self-adjoint linear transformations.
c) Back to the case of \mathbf{C}, Assume that T is normal; this means that T and T^{*} commute. In this case, show that there exists an orthonormal basis of eigenvectors for T. (Hint: show that $T+T^{*}$ and $i\left(T-T^{*}\right)$ are commuting self-adjoint linear transformations.) Bonus: generalize to an arbitrary number of commuting normal linear transformations.

Exercise A9.2: Let V be a finite-dimensional inner product space over \mathbf{R} (or \mathbf{C}), and let $T: V \rightarrow V$ be a linear transformation.
(Note: parts (c-e) of this problem are an introduction to the "singular value decomposition", which I encourage you to look up. The problem works just as well if $T: V \rightarrow W$ with $W \neq V$, but you can stick to the case $W=V$.)
a) Show that $\overrightarrow{\mathbf{v}}$ is an eigenvector of T^{*} (the adjoint of T) if and only iff its orthogonal complement $\overrightarrow{\mathbf{v}}^{\perp}$ is stable under T. (Recall that this means $T\left(\overrightarrow{\mathbf{v}}^{\perp}\right) \subset \overrightarrow{\mathbf{v}}^{\perp}$.) Hint: show first that $\left(\overrightarrow{\mathbf{v}}^{\perp}\right)^{\perp}$ is the set of multiples of $\overrightarrow{\mathbf{v}}$.
b) Show that $\overrightarrow{\mathbf{v}}$ is an eigenvector of $T^{*} T$ if and only if $T\left(\overrightarrow{\mathbf{v}}^{\perp}\right) \subset(T \overrightarrow{\mathbf{v}})^{\perp}$.
c) Show that there exists an orthonormal basis $\left\{\overrightarrow{\mathbf{v}}_{i}\right\}$ of V such that the $T\left(\overrightarrow{\mathbf{v}}_{i}\right)$ are all orthogonal to each other (the $T\left(\overrightarrow{\mathbf{v}}_{i}\right)$ need not have length 1 , however, and some of them may even be zero). Hint: $T^{*} T$ is self-adjoint.
d) Show that every $n \times n$ matrix M can be written $M=U_{1} D U_{2}$, where D is diagonal and U_{1} and U_{2} are both orthogonal (or unitary).
e) Deduce lower and upper bounds on $\|T(\overrightarrow{\mathbf{v}})\|$ in terms of $\|\overrightarrow{\mathbf{v}}\|$ and the entries on the diagonal of D above, where M is the matrix of T with respect to some orthonormal basis.

Exercise A9.3: On \mathcal{P}_{n}, define the inner product $\langle f, g\rangle=\int_{-1}^{1} f(x) g(x) d x$. (Prove for yourself, but do not hand in, the fact that this is positive definite.) Define $T: \mathcal{P}_{n} \rightarrow \mathcal{P}_{n}$ by

$$
T f=\frac{d}{d x}\left(\left(1-x^{2}\right) \frac{d f}{d x}\right)
$$

a) Show that T is self-adjoint with respect to this inner product.
b) What are its eigenvalues?
c) Show that for $0 \leq k \leq n$, there exists an eigenvector P_{k}, of degree k and leading coefficient 1 ; so $P_{k}(x)=x^{k}+a_{k, k-1} x^{k-1}+\ldots+a_{k, 0}$. Show that the different P_{k} 's are orthogonal. What is the eigenvalue of P_{k} ? (For more fun: find an expression for its coefficients $a_{k, i}$. Challenge: find a nice expression for $\left\langle P_{k}, P_{k}\right\rangle$.)
d) What breaks down in each of parts 1-3, if instead of T we consider the linear transformation $f \mapsto d^{2} f / d x^{2}$?

Remark: the P_{k} 's are called the Legendre polynomials.
Look at, but do not hand in, the following exercises:
Chapter 8, exercises 4.13, 4.14, 6.4, 6.8, 6.19, 6.20, M.7.

