Problem set 7, due Thursday, March 14 at the beginning of class

Exercises from Artin:

Chapter 8, exercises 3.3, 3.4, 4.15, 5.1 (do this problem more generally for a Hermitian inner product space), 6.12, 6.13.

Additional Exercises (also required):

Exercise A7.1: (Riesz representation theorem for finite-dimensional spaces) Let V be a finitedimensional inner product space (over $F=\mathbf{R}$ or \mathbf{C}), and let $T: V \rightarrow F$ be a linear transformation. Show that there exists a unique vector $\overrightarrow{\mathbf{w}} \in V$ for which we have

$$
\forall \overrightarrow{\mathbf{x}} \in V, \quad T(\overrightarrow{\mathbf{x}})=\langle\overrightarrow{\mathbf{w}}, \overrightarrow{\mathbf{x}}\rangle .
$$

Hint: First do this in scratch for the cases $V=\mathbf{R}^{n}$ and $V=\mathbf{C}^{n}$, where it is easy. For the general proof, choose an orthonormal basis $\mathcal{U}=\left\{\overrightarrow{\mathbf{u}}_{1}, \ldots, \overrightarrow{\mathbf{u}}_{n}\right\}$ for V, and construct the vector $\overrightarrow{\mathbf{w}}$ out of the $\overrightarrow{\mathbf{u}}_{i}$ and the values $T\left(\overrightarrow{\mathbf{u}}_{i}\right)$.
Exercise A7.2: (Least squares) The system of equations

$$
\left\{\begin{aligned}
x_{1}+3 x_{2}+x_{3} & =-1 \\
-2 x_{1}+6 x_{2}+4 x_{3} & =2 \\
-x_{1}+3 x_{2}+2 x_{3} & =0 \\
3 x_{1}-x_{2}+8 x_{3} & =1
\end{aligned}\right.
$$

has no solutions.
a) Explain why the lack of solutions is the same thing as saying that

$$
\overrightarrow{\mathbf{b}}=\left(\begin{array}{c}
-1 \\
2 \\
0 \\
1
\end{array}\right) \text { does NOT belong to the image of } A=\left(\begin{array}{ccc}
1 & 3 & 1 \\
-2 & 6 & 4 \\
-1 & 3 & 2 \\
3 & -1 & 8
\end{array}\right) .
$$

b) Find a vector $\overrightarrow{\mathbf{x}}=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{4}\end{array}\right) \in \mathbf{R}^{4}$ for which $\|A \overrightarrow{\mathbf{x}}-\overrightarrow{\mathbf{b}}\|$ is as small as possible. (This is called the least squares solution, even though it not actually a solution, and the answer to this part involves an orthogonal projection somewhere.)
c) In general, if A is an $m \times n$ matrix that describes an injective linear transformation $T_{A}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$, and if $\overrightarrow{\mathbf{b}} \in \mathbf{R}^{m}$, then show that there exists a unique $\overrightarrow{\mathbf{x}} \in \mathbf{R}^{n}$ which minimizes the quantity $\|A \overrightarrow{\mathrm{x}}-\overrightarrow{\mathbf{b}}\|$.
d) Show that this $\overrightarrow{\mathrm{x}}$ is the unique solution of the system of equations (written in matrix form):

$$
A^{t} A \overrightarrow{\mathbf{x}}=A^{t} \overrightarrow{\mathbf{b}}
$$

Hint: For what space W do we have $\operatorname{ker} A^{t}=W^{\perp}$?
Exercise A7.3: Let M be an invertible $n \times n$ matrix. Show that one can write $M=U \Delta$ for an upper triangular matrix Δ and an isometry U; i.e., U is an orthogonal or unitary matrix, depending on whether the field of scalars is \mathbf{R} or \mathbf{C}. (Hint: Gram-Schmidt on the columns of M.) What happens if M is not invertible?
Exercise A7.4: (Least-squares linear regression) In \mathbf{R}^{7}, define the vectors

$$
\begin{aligned}
& \overrightarrow{\mathbf{u}}=(1,1,1,1,1,1,1) \\
& \overrightarrow{\mathbf{x}}=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right)=(1,4,5,6,7,9,10) \\
& \overrightarrow{\mathbf{y}}=\left(y_{1}, y_{2}, y_{3}, y_{4}, y_{5}, y_{6}, y_{7}\right)=(0.9,1.6,2.2,1.9,2.8,2.9,3.8) .
\end{aligned}
$$

a) Let $W=\operatorname{span}\{\overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{x}}\}$. Compute an orthogonal basis for W and use it to find $\overrightarrow{\mathbf{z}}=\operatorname{Proj}_{W} \overrightarrow{\mathbf{y}}$.
b) Find a, b such that $\overrightarrow{\mathbf{z}}=a \overrightarrow{\mathbf{x}}+b \overrightarrow{\mathbf{u}}$.
c) In \mathbf{R}^{2}, draw the points (x_{1}, y_{1}), (x_{2}, y_{2}), and so on (i.e., these are the points with coordinates $(1,0.9),(4,1.6), \ldots,(10,3.8)$.) Also draw the line $y=a x+b$ corresponding to the values of a and b from part (b) above. Explain why the line passes very close to the points. (Hint: why is the "vector of errors" $\overrightarrow{\mathbf{e}}=\overrightarrow{\mathbf{y}}-a \overrightarrow{\mathbf{x}}-b \overrightarrow{\mathbf{u}}$ so short?)

