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Problem set 6, due Thursday, March 7 at the beginning of class

Exercises from Artin:
Chapter 8, exercises 2.2, 4.1, 4.3, 4.10, 4.11ac (see the additional exercises before doing 4.11).

Additional Exercises (also required):

Exercise A6.1: For V an inner product space (over R, but not necessarily finite-dimensional),
and for a subset S ⊂ V , recall that the orthogonal space to S is the set S⊥ defined by:

S⊥ = {v⃗ ∈ V | ∀w⃗ ∈ S, ⟨w⃗, v⃗⟩ = 0}.

a) Show that S⊥ is a subspace of V .
b) Show that S⊥ = (spanS)⊥. Thus we will generally look at subspaces W ⊂ V and consider

the subspace W⊥. Conclude that if A is an m × n matrix, representing a linear transformation
from Rn to Rm, then kerA = (ImageAt)⊥, where the orthogonal space is taken using the standard
inner product on Rn.

c) Show that one always has W ⊂ (W⊥)⊥, and W∩W⊥ = {⃗0}. Thus W and W⊥ are
independent subspaces. (This uses the fact that the inner product is positive definite.)

d) Show that if V is finite-dimensional, then dimW + dimW⊥ = dimV . Deduce that V =
W ⊕W⊥.

Hint: One way is to take a basis for W and extend it to a basis for V , then apply Gram-
Schmidt to get (why?) an orthonormal basis for V that contains an orthonormal basis for W . This
allows you to express everything using this orthonormal basis. Another way is to show directly the
existence of the orthogonal projection, but this may take more work. A third way, which works
only in Rn, is to relate this result to the fact that row rank = column rank, and to use the second
part of (b) above.

Exercise A6.2: We work in R5 with the standard inner product. To save space, we shall write
vectors as rows (Artin writes rows and puts transposes, as you may have noticed).

a) Show that the set S = {(1, 2, 1, 1, 0), (2, 1,−3,−1, 0)} is an orthogonal set in R5. Write
W = spanS.

b) Find a basis for W⊥ by directly computing S⊥ from the definition. You will find that W⊥

is 3-dimensional, and you can find a basis {v⃗1, v⃗2, v⃗3} for W⊥ where v⃗1 = e⃗5 = (0, 0, 0, 0, 1) is the
standard basis vector, and v⃗2, v⃗3 are orthogonal to e⃗5.

c) With respect to the basis {e⃗5, v⃗2, v⃗3} for W⊥ that you found above, find a number µ ∈ R
so that {e⃗5, v⃗2, v⃗3 − µv⃗2} are an orthogonal set. Show that this orthogonal set is still a basis for
W⊥. What is the relation with Gram-Schmidt?

d) Write e⃗2 = (0, 1, 0, 0, 0) as a sum of a vector in W and another vector in W⊥.

Exercise A6.3: Let V be an inner product space, and let W be a subspace of V . As before, write
W⊥ for the orthogonal complement of W . Let v⃗ ∈ V be written as v⃗ = v⃗1 + v⃗2, with v⃗1 ∈ W and
v⃗2 ∈ W⊥ (so v⃗1 is the orthogonal projection of v⃗ ontoW ). Show that v⃗1 is the closest vector inW to
v⃗. Here “closest” is measured using the usual distance d(w⃗, w⃗′) = |w⃗ − w⃗′| =

√
⟨w⃗ − w⃗′, w⃗ − w⃗′⟩.

Include at least one picture as part of your explanation!

Exercise A6.4: Let V be an inner product space, and let W1,W2, . . . ,Wr be subspaces of V
that are pairwise orthogonal: this means that if i ̸= j, then for all x⃗ ∈ Wi and y⃗ ∈ Wj , we have
⟨x⃗, y⃗⟩ = 0. Prove that the subspace W1 +W2 + · · ·+Wr ⊂ V is in fact a direct sum:

W1 +W2 + · · ·+Wr = W1 ⊕W2 ⊕ · · · ⊕Wr.

Use this to show that a collection of nonzero pairwise orthogonal vectors is linearly independent.

Look at, but do not hand in, the following exercises:
Chapter 5, exercises 1.4, M.3, M.4, M.5, M.6, M.7. Also read Theorem 5.2.3 (the point is that

the set of diagonalizable matrices is a dense subset of Mn(C)).
Chapter 8, exercises 1.1, 2.1, 4.2.


