Problem set 4, due Thursday, February 22 at the beginning of class

Exercises from Artin:

Chapter 4, exercises 4.6, 5.1, 5.3, 5.7, 6.1 (caution: A might not be diagonalizable), 6.2, M.9.

Additional Exercises (also required):

Exercise A4.1: Find a basis \mathcal{B} with respect to which both of the following linear transformations on \mathbf{R}^{3} become diagonalized (the matrices below are the matrices with respect to the standard basis):

$$
S=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), \quad T=\left(\begin{array}{ccc}
2 & -1 & 2 \\
-1 & 2 & 2 \\
2 & 2 & -1
\end{array}\right) .
$$

Cultural note: A necessary condition for two linear transformations to be simultaneously diagonalized is for them to commute, i.e., $S T=T S$. But this is not sufficient. (Bonus: prove these statements.)
Exercise A4.2: Consider the following matrix representing a linear transformation from \mathbf{R}^{4} to \mathbf{R}^{4} (with respect to the standard basis):

$$
A=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-2 & -2 & 0 & 1 \\
-2 & 0 & -1 & -2
\end{array}\right)
$$

a) Show that the subspace $V=\operatorname{span}\left\{\vec{e}_{3}, \vec{e}_{4}\right\} \subset \mathbf{R}^{4}$ is invariant for A.
b) Find a one-dimensional invariant subspace $L \subset V$ for A.
c) Find and factor the full characteristic polynomial of A, and, for each eigenvalue, find a basis for the associated eigenspace.
d) Show that A is not diagonalizable.

Exercise A4.3: Let $T: \mathbf{R}^{4} \rightarrow \mathbf{R}^{4}$ be given by the matrix $A_{T}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{array}\right)$.
\quad a) Find a basis for each of $\operatorname{ker} T$ and Image T.
b) Deduce the geometric multiplicity $m_{g}(0)$ of the eigenvalue 0 .
c) Deduce also (without complicated calculations!) the existence of an eigenvector $\overrightarrow{\mathbf{v}}$ with a nonzero eigenvalue λ. What is λ ?
d) Use the above to find the characteristic polynomial $p_{T}(x)=\operatorname{det}(x I-T)$.

Exercise A4.4: (Circulant matrices) Recall that in C, the set of fifth roots of unity is the set $\mu_{5}=\left\{\zeta \in \mathbf{C} \mid \zeta^{5}=1\right\}$. By looking at the polar representation of complex numbers, we see that $\mu_{5}=\{1, \exp (2 \pi i / 5), \exp (4 \pi i / 5), \exp (6 \pi i / 5), \exp (8 \pi i / 5)\}$. A similar statement holds for the set μ_{n} of nth roots of unity. All we really need for this problem is the fact that there are exactly n distinct nth roots of unity in C.
a) Let A be the 5×5 circulant matrix

$$
A=\left(\begin{array}{lllll}
a & b & c & d & e \\
e & a & b & c & d \\
d & e & a & b & c \\
c & d & e & a & b \\
b & c & d & e & a
\end{array}\right)
$$

Show that the determinant $\operatorname{det} A$ is given by the following product:

$$
\operatorname{det} A=\prod_{\zeta \in \mu_{5}}\left(a+\zeta b+\zeta^{2} c+\zeta^{3} d+\zeta^{4} e\right)
$$

Hint: find a basis of eigenvectors. Make sure to prove it actually is a basis.
b) Generalize to $n \times n$ circulant matrices.

Look at, but do not hand in, the following exercises:

Chapter 4, exercises 5.2, 5.4, 5.6, 6.3, 6.5, 6.7 (if A and B are not invertible, then $A B$ and $B A$ have the same characteristic polynomial - can you prove this? - but might not be similar; give an example), 6.10, M.6, M.10.

