Problem set 3, due Thursday, February 15 at the beginning of class

Exercises from Artin:

Chapter 1, exercises 5.1, 5.5, M.7.

Additional Exercises (also required):

Exercise A3.1: Let $T: V \rightarrow W$ be a linear transformation, with $\operatorname{dim} \operatorname{ker} T=\ell$. Let $\overrightarrow{\mathbf{v}}_{1}, \ldots, \overrightarrow{\mathbf{v}}_{k} \in$ V be linearly independent vectors. (Note: the $\overrightarrow{\mathbf{v}}_{i}$ are not necessarily a basis for V.) Prove that $\operatorname{dim} \operatorname{span}\left\{T\left(\overrightarrow{\mathbf{v}}_{1}\right), \ldots, T\left(\overrightarrow{\mathbf{v}}_{k}\right)\right\} \geq k-\ell$.
(Hint: use rank-nullity for the restriction of T to an appropriate subspace of V.)
Exercise A3.2: Let V, W be finite-dimensional vector spaces, and let $T: V \rightarrow W$ be a linear transformation.
a) Show that T is surjective if and only if there exists a linear transformation $S: W \rightarrow V$ that satisfies $T S=i d_{W}$.
b) Show that T is injective if and only if there exists a linear transformation $S: W \rightarrow V$ that satisfies $S T=i d_{V}$.

Suggestion: for both parts (a) and (b), one direction requires you to actually construct a specific S. To do this, choose bases of V and W in an appropriate way, and use the fact that linear transformations can be expressed in terms of matrices and vice-versa, once you have chosen bases. Alternatively, you can use the linear extension theorem if you are adept at using it.

Exercise A3.3: Which of the following matrices (over \mathbf{R}) are equivalent? Which are similar? Explain.

$$
\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right), \quad\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

Exercise A3.4: Consider the matrices over \mathbf{R}

$$
A=\left(\begin{array}{cccc}
1 & 1 & 1 & 3 \\
1 & 1 & 2 & 4 \\
1 & 2 & 0 & 3 \\
3 & 4 & 3 & 10
\end{array}\right), \quad B=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 2 \\
1 & 2 & 0
\end{array}\right)
$$

a) Find the determinants $\operatorname{det} A$ and $\operatorname{det} B$ by using column operations.
b) Repeat the calculation of part (a), using row operations.
c) What are the ranks rank B and rank A (in that order)? Justify.

Exercise A3.5: (Cramer's rule) You may have seen the following method to solve linear systems of equations: the solution to $\left(\begin{array}{ccc}1 & -1 & 4 \\ -8 & 3 & 1 \\ 2 & -1 & 1\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{c}-2 \\ 0 \\ 6\end{array}\right)$ is given by

$$
x_{1}=\frac{\operatorname{det}\left(\begin{array}{ccc}
-2 & -1 & 4 \\
0 & 3 & 1 \\
6 & -1 & 1
\end{array}\right)}{\operatorname{det}\left(\begin{array}{ccc}
1 & -1 & 4 \\
-8 & 3 & 1 \\
2 & -1 & 1
\end{array}\right)}, \quad x_{2}=\frac{\operatorname{det}\left(\begin{array}{ccc}
1 & -2 & 4 \\
-8 & 0 & 1 \\
2 & 6 & 1
\end{array}\right)}{\operatorname{det}\left(\begin{array}{ccc}
1 & -1 & 4 \\
-8 & 3 & 1 \\
2 & -1 & 1
\end{array}\right)}, \quad x_{3}=\frac{\operatorname{det}\left(\begin{array}{ccc}
1 & -1 & -2 \\
-8 & 3 & 0 \\
2 & -1 & 6
\end{array}\right)}{\operatorname{det}\left(\begin{array}{ccc}
1 & -1 & 4 \\
-8 & 3 & 1 \\
2 & -1 & 1
\end{array}\right)} .
$$

a) Prove Cramer's rule in the general case: let A be an $n \times n$ matrix with entries in F, and $\vec{x}, \vec{b} \in F^{n}$ with $A \vec{x}=\vec{b}$, then the i th coordinate x_{i} of \vec{x} satisfies $x_{i} \operatorname{det} A=\operatorname{det} A_{i}$, where A_{i} is gotten from A by replacing the i th column with \vec{b}.

Hint: let the columns of A be $C_{1}, C_{2}, \ldots C_{n}$. Then $A \vec{x}=\vec{b}$ means that $x_{1} C_{1}+\ldots+x_{n} C_{n}=\vec{b}$; in the above example, for instance, we have $x_{1}\left(\begin{array}{c}1 \\ -8 \\ 2\end{array}\right)+x_{2}\left(\begin{array}{c}-1 \\ 3 \\ -1\end{array}\right)+x_{3}\left(\begin{array}{l}4 \\ 1 \\ 1\end{array}\right)=\left(\begin{array}{c}-2 \\ 0 \\ 6\end{array}\right)$. Now the columns of A_{1} are $\vec{b}, C_{2}, \ldots, C_{n}$, i.e., $\left(\sum_{j} x_{j} C_{j}\right), C_{2}, \ldots, C_{n}$. Evaluate $\operatorname{det} A_{1}$ using properties of the determinant to conclude that $\operatorname{det} A_{1}=x_{1} \operatorname{det} A$. Generalize to all x_{i}. (Side note: the proof does not really need A to be invertible; however, if A is not invertible, then this forces each A_{i} to have determinant 0 . It is interesting to think about what this means.)
b) Deduce from the above that if A is invertible, then $A^{-1}=(\operatorname{det} A)^{-1} \tilde{A}$, where the entries of the matrix \tilde{A} are polynomials in the entries of A. Cultural note: when $F=\mathbf{R}$ or \mathbf{C}, this shows that A^{-1} depends continuously on A (provided, of course, that $\operatorname{det} A \neq 0$, so that the inverse exists in the first place). The matrix \tilde{A} is called the cofactor matrix of A, or sometimes the classical adjoint or adjugate of A. See Section 1.6 of Artin.

Hint: the i th column of A^{-1} is $A^{-1} \vec{e}_{i}$, which can be found by solving the system $A \vec{x}=\vec{e}_{i}$.
Exercise A3.6: (Elementary matrices) Let

$$
E_{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), \quad E_{2}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 77 & 0 \\
0 & 0 & 1
\end{array}\right), \quad E_{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 88 \\
0 & 0 & 1
\end{array}\right), \quad A=\left(\begin{array}{ccc}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right) .
$$

The E_{i} are certain types of 3×3 elementary matrices, and analogs exist for all $n \times n$ matrices.
a) For $i=1,2,3$ find $E_{i} A$ and $A E_{i}$, and interpret in terms of row or column operations on A.
b) Which operations preserve ker A ? What about Image A ? Why?
c) What do these operations do to det A ? (Answer this question in two ways, once by finding $\operatorname{det} E_{i}$, and once from the determinant being multilinear and alternating in the rows or columns of A.)
d) Let $\vec{b} \in \mathbf{R}^{3}$. We know how to solve the linear system $A \vec{x}=\vec{b}$ for unknown $\vec{x} \in \mathbf{R}^{3}$ by Gaussian elimination. Show that each step in Gaussian elimination amounts to replacing A and \vec{b} by $E A$ and $E \vec{b}$ for a suitable elementary matrix E (in practice, we often do several steps at once).

Exercise A3.7: Prove directly from the definition of the determinant as a sum over $\sigma \in S_{n}$ that $\operatorname{det} A^{t}=\operatorname{det} A$.
(Hint: at one key moment, you will need to use the fact that $\operatorname{sign} \sigma^{-1}=\operatorname{sign} \sigma$. Make sure to also justify why this fact holds.)

Look at, but do not hand in, the following exercises:

Chapter 1, exercises 5.2, 5.3, M.8, M. 9 (and, purely for entertainment, M.10).
Treil's book, "Linear Algebra Done Wrong": look through the chapter on determinants and do a selection of problems (some computational, some conceptual, some that look interesting for their own sake).

