Math 220, Linear Algebra II - Spring 2024
 https://sites.aub.edu.lb/kmakdisi/

Problem set 1, due Thursday, February 1 at the beginning of class

Exercises from Artin:

Notes on notation: (i) $\mathbf{F}_{p}=\mathbf{Z} / p \mathbf{Z}$ is the finite field with p elements, where p is a prime. (ii) $G L_{n}(F)$ is the multiplicative group of invertible $n \times n$ matrices with entries in F; you can think of it as the group of invertible linear transformations from F^{n} to itself. The subgroup $S L_{n}(F)$ consists of those matrices with determinant 1. (The symbols $G L$ and $S L$ refer to the general linear group and the special linear group.)

Chapter 2, exercises 5.5, 12.5.
Chapter 3, exercises 2.4, 2.5, 2.6, 4.5, 5.4 (hint: the formula for $\left|G L_{2}\left(\mathbf{F}_{p}\right)\right|$ reads better as $\left.\left(p^{2}-1\right)\left(p^{2}-p\right)\right)$.

Additional Exercises (also required):

Exercise A1.1: Define $T: \mathbf{R}^{4} \rightarrow \mathbf{R}^{3}$ by the matrix $A_{T}=\left(\begin{array}{cccc}1 & 2 & 1 & 2 \\ 2 & 4 & 3 & 0 \\ 4 & 8 & 5 & 4\end{array}\right)$.
a) Find a basis for each of $\operatorname{ker} T$ and Image T.
b) Find new bases $\mathcal{B}=\left\{\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}, \overrightarrow{\mathbf{v}}_{3}, \overrightarrow{\mathbf{v}}_{4}\right\}$ for \mathbf{R}^{4} and $\mathcal{C}=\left\{\overrightarrow{\mathbf{w}}_{1}, \overrightarrow{\mathbf{w}}_{2}, \overrightarrow{\mathbf{w}}_{3}\right\}$ for \mathbf{R}^{3} such that

$$
T\left(\overrightarrow{\mathbf{v}}_{1}\right)=\overrightarrow{\mathbf{w}}_{1}, \quad T\left(\overrightarrow{\mathbf{v}}_{2}\right)=\overrightarrow{\mathbf{w}}_{2}, \quad T\left(\overrightarrow{\mathbf{v}}_{3}\right)=T\left(\overrightarrow{\mathbf{v}}_{4}\right)=\overrightarrow{0} .
$$

Exercise A1.2: Let $T: V \rightarrow W$ be a linear transformation, and do not assume that V is finite-dimensional. Suppose we know that $\operatorname{ker} T$ and $\operatorname{Image} T$ are finite dimensional. Prove that in this case V is finite-dimensional and that $\operatorname{dim} V=\operatorname{dim} \operatorname{ker} T+\operatorname{dim} \operatorname{Image} T$.

Exercise A1.3: Let $\mathcal{P}_{n}=\mathcal{P}_{n}(\mathbf{R})$ be the space of polynomials of degree $\leq n$ with coefficients in \mathbf{R}.

Consider the linear transformation $T: \mathcal{P}_{n} \rightarrow \mathcal{P}_{n}$ defined by $T(f)=f+f^{\prime}$. Show that T is bijective without necessarily finding the inverse T^{-1}.

Look at, but do not hand in, the following exercises:

Chapter 2, exercises 5.3, 12.2 .
Chapter 3, exercises 4.2, 4.3, 5.5, M.4.
"Look At" Exercise L1.1: Let V be a vector space, and take an ordered list L of vectors $\overrightarrow{\mathbf{v}}_{1}, \ldots, \overrightarrow{\mathbf{v}}_{k} \in V$ (the vectors are necessarily distinct): so $L=\left(\overrightarrow{\mathbf{v}}_{1}, \ldots, \overrightarrow{\mathbf{v}}_{k}\right)$. Let $c \in F$, let $i \neq j$, and consider the new list $L^{\prime}=\left(\overrightarrow{\mathbf{v}}_{1}^{\prime}, \ldots, \overrightarrow{\mathbf{v}}_{k}^{\prime}\right)$ that is given by $\overrightarrow{\mathbf{v}}_{\ell}^{\prime}=\overrightarrow{\mathbf{v}}_{\ell}$ when $\ell \neq i$, but $\overrightarrow{\mathbf{v}}_{i}^{\prime}=\overrightarrow{\mathbf{v}}_{i}+c \overrightarrow{\mathbf{v}}_{j}$. For example: L could be ($\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}, \overrightarrow{\mathbf{v}}_{3}$) and L^{\prime} could be $\left(\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}-7 \overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{3}\right)$. In this example, $i=2, j=1$, and $c=-7$.

Show in general that (i) span $L=\operatorname{span} L^{\prime}$, and (ii) L is linearly independent if and only if L^{\prime} is linearly independent.

