Math 242, Topics in Algebra – Spring 2023 https://sites.aub.edu.lb/kmakdisi/ Problem set 11, NOT DUE; use it to practice the last sections before the final

Exercises from Fraleigh:

Section 55, exercises 1, 2, 6, 8, 10, 11, 12. Section 56, exercises 1, 4, 5, 8.

Additional Practice Exercises:

Exercise A11.1: We consider the splitting field E over \mathbf{Q} of the polynomial $x^6 + 3$. Let α be a root of $x^6 + 3$, and let ζ be a primitive 6th root of unity. (It probably helps to view α and ζ as elements of \mathbf{C}).

a) Find $irr(\alpha, \mathbf{Q})$ and $irr(\zeta, \mathbf{Q})$. Justify, as always.

b) Show that $E = \mathbf{Q}(\alpha, \zeta)$. List explicitly the conjugates (over \mathbf{Q}) of each of α and ζ , expressing the conjugates as elements in $\mathbf{Q}(\alpha, \zeta)$.

c) Show that in fact one can take $\zeta = (1 + \alpha^3)/2$, so that $E = \mathbf{Q}(\alpha)$.

d) List all the elements of $\operatorname{Gal}(E/\mathbf{Q})$, indicating their effect on each of α and ζ .

e) Show that $\operatorname{Gal}(E/\mathbf{Q})$ is not abelian by finding two explicit elements $\sigma, \tau \in \operatorname{Gal}(E/\mathbf{Q})$ for which $\sigma \tau \neq \tau \sigma$. What are the orders of your choice of σ, τ , and $\sigma \tau$ in the Galois group?

f) Let K, K', and K'' be the fixed fields of the cyclic groups $\langle \sigma \rangle$, $\langle \tau \rangle$, and $\langle \sigma \tau \rangle$, respectively. Find generators for each of K, K', and K''.

Exercise A11.2: Find all intermediate fields between \mathbf{Q} and $\mathbf{Q}(\mu_{13})$. Describe each such field explicitly as $\mathbf{Q}(\alpha)$ for a suitable α . Also show that each $\mathbf{Q}(\alpha)$ is a Galois extension of \mathbf{Q} and determine $G(\mathbf{Q}(\alpha)/\mathbf{Q})$.

Exercise A11.3: Consider the 17th cyclotomic field $E = \mathbf{Q}(\zeta)$, where $\zeta = \exp(2\pi i/17)$. Express the extension E/\mathbf{Q} as a tower of quadratic extensions, and find an explicit expression for $2\cos(2\pi/17) = \zeta + \zeta^{-1}$ in terms of square roots (of expressions involving square roots, etc.). Use this to show that the regular 17-gon is constructible with ruler and compass.

Exercise A11.4: Given a field F, consider the function field $L = F(y_1, y_2, y_3, y_4)$ and the symmetric function field $K = F(s_1, s_2, s_3, s_4)$ where s_i is the *i*th elementary symmetric polynomial in $\{y_1, y_2, y_3, y_4\}$. We know that we can identify G(L/K) with S_4 . Let $G = D_4$ be the subgroup of S_4 consisting of symmetries of the square:

 $G = \{1, (13), (24), (12)(34), (14)(23), (13)(24), (1234), (1432)\}.$

a) Define $\alpha = y_1 y_2 + y_2 y_3 + y_3 y_4 + y_4 y_1$, and $\beta = y_1 y_3 + y_2 y_4$. Show that $L_G = K(\alpha) = K(\beta)$.

b) Find $irr(\beta, K)$. (This involves some calculation! Depending on taste, you may wish to use the letters a, b, c, d instead of y_1, y_2, y_3, y_4 .)

c) Define $H \leq G$ by $H = \{1, (1234), (13)(24), (1432)\}$. (I.e., H is the cyclic subgroup of rotations of the square.) Find some $\gamma \in L$ such that $L_H = K(\gamma)$. There exists a quadratic in $K(\beta)[x]$ which has γ as a root; find the other root γ' of this polynomial.

d) (A rather serious computational challenge, for extra credit — I suggest you use a symbolic algebra software package.) We know that $\gamma + \gamma'$, $\gamma\gamma'$, and α all belong to $K(\beta)$. Try to express at least one of them in the form $c_r\beta^r + \cdots + c_1\beta + c_0$, with the $c_i \in K$. Alternatively, you can try to express β in terms of α , using coefficients in K.

Exercise A11.5: This problem gives you an idea of how a solvable Galois group allows one to solve a polynomial by radicals. We'll sketch the main ideas involved in solving a general cubic equation. We start with a field F in characteristic zero, and we assume that F contains a

primitive 3rd root of unity ζ . Let y_1, y_2, y_3 be three "independent" transcendental elements, and let

$$K = F(s_1, s_2, s_3), \qquad L = F(y_1, y_2, y_3)$$

where $s_1 = y_1 + y_2 + y_3$, $s_2 = y_1y_2 + y_1y_3 + y_2y_3$, and $s_3 = y_1y_2y_3$ are the elementary symmetric polynomials, as usual. Recall that $\Delta = (y_1 - y_2)(y_1 - y_3)(y_2 - y_3) \in L$ is the discriminant.

a) By considering the action of S_3 (viewed as the Galois group G(L/K)), show that $\Delta^2 \in K$ but $\Delta \notin K$. Deduce that the field $M = K(\Delta)$ is an extension of K by radicals, with [M:K] = 2. (I recommend that you avoid trying to explicitly write Δ^2 in terms of s_1, s_2, s_3 , since the expression is a bit messy; however it is good if you look up the discriminant of a cubic equation for culture.)

b) Now let $\beta = y_1 + \zeta y_2 + \zeta^2 y_3$. Show that $\beta^3 \in M$ but $\beta \notin M$, this time by considering the action of the subgroup G(L/M) of S_3 . (Do not calculate β^3 directly, but instead show that every $\sigma \in G(L/M)$ sends β to some simple multiple of β , which allows you to understand the action on β^3 .) Deduce that $L = M(\beta)$ and that L is an extension of M by radicals.

Cultural note: this shows that we can get the roots y_1, y_2, y_3 of the polynomial $x^3 - s_1 x^2 + s_2 x - s_3 \in K[x]$ by taking a square root of an element of K to get Δ , then a cube root of an element of $K[\Delta]$ to get β , which we can use to express all the elements of L, in particular y_1, y_2 , and y_3 .

A few more exercises to look at:

Section 55, exercises 3, 4, 5, 13, 14, 15.

Section 56, exercises 6, 7.

Jacobson, Basic Algebra I, any exercises you like from chapter 4. I particularly encourage you to read sections 4.5–4.11, and 4.16.