Problem set 11, NOT DUE; use it to practice the last sections before the final

Exercises from Fraleigh:

Section 55, exercises 1, 2, 6, 8, 10, 11, 12.
Section 56, exercises 1, 4, 5, 8.

Additional Practice Exercises:

Exercise A11.1: We consider the splitting field E over \mathbf{Q} of the polynomial $x^{6}+3$. Let α be a root of $x^{6}+3$, and let ζ be a primitive 6 th root of unity. (It probably helps to view α and ζ as elements of \mathbf{C}).
a) Find $\operatorname{irr}(\alpha, \mathbf{Q})$ and $\operatorname{irr}(\zeta, \mathbf{Q})$. Justify, as always.
b) Show that $E=\mathbf{Q}(\alpha, \zeta)$. List explicitly the conjugates (over \mathbf{Q}) of each of α and ζ, expressing the conjugates as elements in $\mathbf{Q}(\alpha, \zeta)$.
c) Show that in fact one can take $\zeta=\left(1+\alpha^{3}\right) / 2$, so that $E=\mathbf{Q}(\alpha)$.
d) List all the elements of $\operatorname{Gal}(E / \mathbf{Q})$, indicating their effect on each of α and ζ.
e) Show that $\operatorname{Gal}(E / \mathbf{Q})$ is not abelian by finding two explicit elements $\sigma, \tau \in \operatorname{Gal}(E / \mathbf{Q})$ for which $\sigma \tau \neq \tau \sigma$. What are the orders of your choice of σ, τ, and $\sigma \tau$ in the Galois group?
f) Let K, K^{\prime}, and $K^{\prime \prime}$ be the fixed fields of the cyclic groups $\langle\sigma\rangle,\langle\tau\rangle$, and $\langle\sigma \tau\rangle$, respectively. Find generators for each of K, K^{\prime}, and $K^{\prime \prime}$.

Exercise A11.2: Find all intermediate fields between \mathbf{Q} and $\mathbf{Q}\left(\mu_{13}\right)$. Describe each such field explicitly as $\mathbf{Q}(\alpha)$ for a suitable α. Also show that each $\mathbf{Q}(\alpha)$ is a Galois extension of \mathbf{Q} and determine $G(\mathbf{Q}(\alpha) / \mathbf{Q})$.

Exercise A11.3: Consider the 17th cyclotomic field $E=\mathbf{Q}(\zeta)$, where $\zeta=\exp (2 \pi i / 17)$. Express the extension E / \mathbf{Q} as a tower of quadratic extensions, and find an explicit expression for $2 \cos (2 \pi / 17)=\zeta+\zeta^{-1}$ in terms of square roots (of expressions involving square roots, etc.). Use this to show that the regular 17 -gon is constructible with ruler and compass.

Exercise A11.4: Given a field F, consider the function field $L=F\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$ and the symmetric function field $K=F\left(s_{1}, s_{2}, s_{3}, s_{4}\right)$ where s_{i} is the i th elementary symmetric polynomial in $\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$. We know that we can identify $G(L / K)$ with S_{4}. Let $G=D_{4}$ be the subgroup of S_{4} consisting of symmetries of the square:

$$
G=\{1,(13),(24),(12)(34),(14)(23),(13)(24),(1234),(1432)\} .
$$

a) Define $\alpha=y_{1} y_{2}+y_{2} y_{3}+y_{3} y_{4}+y_{4} y_{1}$, and $\beta=y_{1} y_{3}+y_{2} y_{4}$. Show that $L_{G}=K(\alpha)=K(\beta)$.
b) Find $\operatorname{irr}(\beta, K)$. (This involves some calculation! Depending on taste, you may wish to use the letters a, b, c, d instead of $y_{1}, y_{2}, y_{3}, y_{4}$.)
c) Define $H \leq G$ by $H=\{1,(1234),(13)(24),(1432)\}$. (I.e., H is the cyclic subgroup of rotations of the square.) Find some $\gamma \in L$ such that $L_{H}=K(\gamma)$. There exists a quadratic in $K(\beta)[x]$ which has γ as a root; find the other root γ^{\prime} of this polynomial.
d) (A rather serious computational challenge, for extra credit - I suggest you use a symbolic algebra software package.) We know that $\gamma+\gamma^{\prime}, \gamma \gamma^{\prime}$, and α all belong to $K(\beta)$. Try to express at least one of them in the form $c_{r} \beta^{r}+\cdots+c_{1} \beta+c_{0}$, with the $c_{i} \in K$. Alternatively, you can try to express β in terms of α, using coefficients in K.

Exercise A11.5: This problem gives you an idea of how a solvable Galois group allows one to solve a polynomial by radicals. We'll sketch the main ideas involved in solving a general cubic equation. We start with a field F in characteristic zero, and we assume that F contains a
primitive 3 rd root of unity ζ. Let y_{1}, y_{2}, y_{3} be three "independent" transcendental elements, and let

$$
K=F\left(s_{1}, s_{2}, s_{3}\right), \quad L=F\left(y_{1}, y_{2}, y_{3}\right)
$$

where $s_{1}=y_{1}+y_{2}+y_{3}, s_{2}=y_{1} y_{2}+y_{1} y_{3}+y_{2} y_{3}$, and $s_{3}=y_{1} y_{2} y_{3}$ are the elementary symmetric polynomials, as usual. Recall that $\Delta=\left(y_{1}-y_{2}\right)\left(y_{1}-y_{3}\right)\left(y_{2}-y_{3}\right) \in L$ is the discriminant.
a) By considering the action of S_{3} (viewed as the Galois group $G(L / K)$), show that $\Delta^{2} \in K$ but $\Delta \notin K$. Deduce that the field $M=K(\Delta)$ is an extension of K by radicals, with $[M: K]=2$. (I recommend that you avoid trying to explicitly write Δ^{2} in terms of s_{1}, s_{2}, s_{3}, since the expression is a bit messy; however it is good if you look up the discriminant of a cubic equation for culture.)
b) Now let $\beta=y_{1}+\zeta y_{2}+\zeta^{2} y_{3}$. Show that $\beta^{3} \in M$ but $\beta \notin M$, this time by considering the action of the subgroup $G(L / M)$ of S_{3}. (Do not calculate β^{3} directly, but instead show that every $\sigma \in G(L / M)$ sends β to some simple multiple of β, which allows you to understand the action on β^{3}.) Deduce that $L=M(\beta)$ and that L is an extension of M by radicals.

Cultural note: this shows that we can get the roots y_{1}, y_{2}, y_{3} of the polynomial $x^{3}-s_{1} x^{2}+$ $s_{2} x-s_{3} \in K[x]$ by taking a square root of an element of K to get Δ, then a cube root of an element of $K[\Delta]$ to get β, which we can use to express all the elements of L, in particular y_{1}, y_{2}, and y_{3}.

A few more exercises to look at:

Section 55, exercises 3, 4, 5, 13, 14, 15.
Section 56, exercises 6, 7.
Jacobson, Basic Algebra I, any exercises you like from chapter 4. I particularly encourage you to read sections 4.5-4.11, and 4.16.

