Problem set 9, due Tuesday, April 25 at the beginning of class

Exercises from Fraleigh:

Section 51, exercises 1, 4, 11, 14.
Section 53, exercises 1, 2, 3, 4, 5, 7, 8, 10, 16, 20, 21, 23. (Exercises $1-10$ are fairly quick).

Additional Exercises (also required):

Exercise A9.1: (Taken from Jacobson, Basic Algebra I) Show for yourself (but do not hand in the proof) that the polynomial $f(x)=x^{3}+x^{2}-2 x-1$ is irreducible in $\mathbf{Q}[x]$. Let α be a root of f.
a) Show that $\beta=\alpha^{2}-2$ is also a root of f.
b) Show that $\mathbf{Q}(\alpha)$ is a Galois extension of \mathbf{Q}.
c) Find the Galois group $G(\mathbf{Q}(\alpha) / \mathbf{Q})$.

Look at, but do not hand in, the following exercises:

Section 51, exercises 2, 3, 9, 10, 12, 13, 15-22.
Section 52, exercises 1, 2, 3, 4, 7, 8 .
Section 53, Exercises 6, 9, 11, 12, 13, 24.
"Look At" Exercise L9.1 - not to be handed in: a) Let F be an infinite field, and let V be a finite-dimensional vector space over F. Given finitely many proper subspaces $W_{1} \subsetneq V, W_{2} \subsetneq V, \ldots, W_{r} \subsetneq V$, show that

$$
W_{1} \cup \cdots \cup W_{r} \subsetneq V .
$$

Hint: Without loss of generality, $V=F^{n}$. Show that each W_{i} is contained in a "hyperplane" H_{i} given by an equation $a_{i 1} x_{1}+\cdots a_{i n} x_{n}=0$. Show that some choice of $x_{1}, \ldots, x_{n} \in F$ makes all of these equations (for all i) nonzero.
b) Use the above result to deduce the primitive element theorem. (Sketch: let $n=$ $[E: F]=\{E: F\}$, and let $\sigma_{1}, \ldots, \sigma_{n}$ be the different F-embeddings of E into \bar{F}. For each pair (i, j) with $i \neq j$, show that $W_{(i, j)}=\left\{\alpha \in E \mid \sigma_{i}(\alpha)=\sigma_{j}(\alpha)\right\}$ is a proper F-subspace of E. Take γ not in the union of the $W_{(i, j)}$.)

