Problem set 7, due Tuesday, April 11 at the beginning of class

Exercises from Fraleigh:

Section 48, exercises 15, 18, 19, 22, 27, 32, 36.
Section 49, exercises 1, 2, 3, 10, 11, 13.

Additional Exercises (also required):

Exercise A7.1: Let F be a field, and \bar{F} its algebraic closure.
a) If $\alpha, \beta \in \bar{F}$, show that α and β are F-conjugate if and only if there exists an (F-)automorphism $\sigma \in G(\bar{F} / F)$ such that $\sigma(\alpha)=\beta$.
b) Now take $F=\mathbf{Q}$, and let $\zeta=\exp (2 \pi i / 7)$ and $\alpha=\zeta+\zeta^{-1}$ (as in a previous exercise). Also review exercise 36 of Section 48. Use the action of $G(\mathbf{Q}(\zeta) / \mathbf{Q})$ on α to show that α has three \mathbf{Q}-conjugates: $\alpha_{1}=\alpha, \alpha_{2}$, and α_{3}. Use your expressions for these conjugates to compute the polynomial $g(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right)\left(x-\alpha_{3}\right)=\operatorname{irr}(\alpha, \mathbf{Q})$.
c) For which $\sigma \in G(\mathbf{Q}(\zeta) / \mathbf{Q})$ do we have $\sigma(\alpha)=\alpha$? More generally, over any field F and for any $\alpha \in \bar{F}$, why is the set $\{\sigma \in G(\bar{F} / F) \mid \sigma(\alpha)=\alpha\}$ a group?

Look at, but do not hand in, the following exercises:
Section 48, exercises $12,14,28,33,34,35,37,38,39$.
Section 49, exercises 5, 6, 7, 8, 9 .

