Problem set 10, due Tuesday, May 2 at the beginning of class

Exercises from Fraleigh:

Section 53, exercises $25,26$.
Section 54, exercises 4, 5, 9, 10, 11, 12 .
Additional Exercises (also required):
Exercise A10.1: (Adapted from Artin, Algebra) Let E be a Galois extension of \mathbf{Q} such that $G(E / \mathbf{Q})$ is isomorphic to the Klein 4-group. Show that $E=\mathbf{Q}(\sqrt{d}, \sqrt{e})$ for some $d, e \in \mathbf{Q}$.

Exercise A10.2: (Also adapted from Artin) Let F be a field of characteristic p, let $a \in F$, and assume that the polynomial $f(x)=x^{p}-x-a \in F[x]$ is irreducible. (Note: one can show that this particular $f(x)$ is irreducible if and only if it has no roots in F.) Let $\alpha \in \bar{F}$ be a root of f.
a) Show that $\alpha+1$ is also a root of f.
b) Show that $F(\alpha)$ is a Galois extension of F.
c) Show that $G(F(\alpha) / F)$ is a cyclic group of order p.

Exercise A10.3: Let $\alpha=\sqrt{2+\sqrt{3}}$.
a) Find $f(x)=\operatorname{irr}(\alpha, \mathbf{Q})$. As always, justify. Show that the roots of $f(x)$ are $\alpha,-\alpha, 1 / \alpha,-1 / \alpha$. Deduce that the splitting field of $f(x)$ over \mathbf{Q} is $K=\mathbf{Q}(\alpha)$.
b) Find the Galois group $G=\operatorname{Gal}(K / \mathbf{Q})$. This means to "do the complete job", as Fraleigh says in Exercise 54.8. In other words: (i) describe all the elements of G in terms of their effect on α and its conjugates, (ii) and identify all of the subgroups $H_{1}, H_{2}, \ldots<G$, as well as the associated intermediate fields F_{1}, F_{2}, \ldots. This means in particular that you should find generators of the intermediate fields, i.e., express each such field F_{i} as $\mathbf{Q}\left(\beta_{i}\right)$ for some suitable β_{i}.
c) Identify the splitting field K as a familiar extension of \mathbf{Q} from the course. (The easiest way is to replace each β_{i} by an "easier" generator of F_{i}.)

Exercise A10.4: Let $p \neq 2$ be a prime and let E be the splitting field of $x^{p}-2$ over \mathbf{Q}. Note that $E=\mathbf{Q}(\sqrt[p]{2}, \zeta)$, where ζ is a primitive p th root of unity.
a) Show that $[E: \mathbf{Q}]=p(p-1)$. (Caution: it is neither obvious that $x^{p}-2$ is irreducible over $\mathbf{Q}(\zeta)$, nor that $\Phi_{p}(x)=\left(x^{p}-1\right) /(x-1)$ is irreducible over $\mathbf{Q}(\sqrt[p]{2})$. In fact, for some nonprime p, these statements are false!)
b) Show that $G(E / \mathbf{Q})$ is isomorphic to the (multiplicative) group of matrices

$$
\left\{\left.\left(\begin{array}{cc}
a & b \\
0 & 1
\end{array}\right) \right\rvert\, a \in \mathbf{Z}_{p}^{*}, b \in \mathbf{Z}_{p}\right\} .
$$

(This group is sometimes called the $a x+b$ group; can you see why?)
Look at, but do not hand in, the following exercises:
Section 53, exercises 17, 18, 19.
Section 54, exercise 8.

