Math 242, Topics in Algebra - Spring 2023
https://sites.aub.edu.lb/kmakdisi/
Problem set 6, due Tuesday, April 4 at the beginning of class

Exercises from Fraleigh:

Section 33, exercises 4, 5, 10, 12, 13.
Section 48, exercises $5,6,7,8,9,10,11$. (These are fairly quick).
Additional Exercises (also required):
Exercise A6.1: Show that all the roots of $x^{3}-5 x+2$ are constructible real numbers, while none of the roots of $x^{3}-6 x+2$ is constructible.

Exercise A6.2: Let \mathbf{F}_{25} be the finite field with 25 elements. Show that there exists an irreducible polynomial $f \in \mathbf{F}_{25}[x]$ with $\operatorname{deg} f=242$.

Generalize to irreducible polynomials of any degree over any finite field.
Exercise A6.3: Consider the polynomial $f=x^{4}+x^{2}+x+3 \in \mathbf{Z}_{5}[x]$.
a) Factor this polynomial into irreducibles in $\mathbf{Z}_{5}[x]$, and prove that the resulting factors are irreducible. (Nothing tricky is involved.)
b) How many roots does this polynomial have over each of (i) $\mathbf{F}_{5}=\mathbf{Z}_{5}$, (ii) \mathbf{F}_{125}, and (iii) \mathbf{F}_{25} ? (You do not need to find the actual roots; just count how many there are.)
c) Deduce the GCDs $\operatorname{gcd}\left(f, x^{5}-x\right), \operatorname{gcd}\left(f, x^{125}-x\right)$, and $\operatorname{gcd}\left(f, x^{25}-x\right)$ in $\mathbf{F}_{5}[x]$.

Exercise A6.4: Let p be a prime number, and let $\mathbf{F}_{p}=\mathbf{Z}_{p}$ as usual. Take $\alpha \in \overline{\mathbf{F}}_{p}$ with $\left[\mathbf{F}_{p}(\alpha): \mathbf{F}_{p}\right]=4$. Write $E=\mathbf{F}_{p}(\alpha)$, so $E=\mathbf{F}_{p^{4}}$.
a) Show that $\alpha, \alpha^{p}, \alpha^{p^{2}}, \alpha^{p^{3}}$ are all distinct and that

$$
\operatorname{irr}\left(\alpha, \mathbf{F}_{p}\right)=(x-\alpha)\left(x-\alpha^{p}\right)\left(x-\alpha^{p^{2}}\right)\left(x-\alpha^{p^{3}}\right)
$$

b) Show that the number of monic irreducible polynomials of degree 4 in $\mathbf{F}_{p}[x]$ is exactly $\left(p^{4}-p^{2}\right) / 4$.
c) By considering $\mathbf{F}_{p^{6}}$, find the number of monic irreducible polynomials of degree 6 in $\mathbf{F}_{p}[x]$. (Be careful with the counting.)

Look at, but do not hand in, the following exercises:

Section 33, exercises 1, 6, 7, 8, 9, 11, 14.
Section 48, exercises 23, 24, 25, 26, 28.

