Problem set 4, due Tuesday, March 14 at the beginning of class

Exercises from Fraleigh:

Section 30, exercises $2,3,5,6,11,12,13,24,25$.
Section 31, exercises 1, 3, 5, 10.
Additional Exercises (also required):
Exercise A4.1, copied from Jacobson Basic Algebra I: Let $w=\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}$ (in \mathbf{C}). Note that $w^{12}=1$ but $w^{r} \neq 1$ if $1 \leq r<12$ (so w is a generator of the cyclic group of 12 th roots of 1). Show that $[\mathbf{Q}(w): \mathbf{Q}]=4$ and determine the minimum [meaning irreducible] polynomial of w over \mathbf{Q}.
[Note: it may be easier to find the minimum polynomial first, and then deduce the degree $[\mathbf{Q}(w): \mathbf{Q}]$.]

Exercise A4.2: In this problem, we write $\zeta=\exp (2 \pi i / 7) \in \mathbf{C}$. As you know, $\zeta^{7}=1$, and in fact we have the following factorizations over \mathbf{C} :

$$
\begin{aligned}
x^{7}-1 & =(x-1)(x-\zeta)\left(x-\zeta^{2}\right)\left(x-\zeta^{3}\right)\left(x-\zeta^{4}\right)\left(x-\zeta^{5}\right)\left(x-\zeta^{6}\right), \\
f(x) & =(x-\zeta)\left(x-\zeta^{2}\right)\left(x-\zeta^{3}\right)\left(x-\zeta^{4}\right)\left(x-\zeta^{5}\right)\left(x-\zeta^{6}\right),
\end{aligned}
$$

where

$$
f(x)=\frac{x^{7}-1}{x-1}=x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1 \in \mathbf{Z}[x] .
$$

a) Show that $f(x)$ is irreducible in $\mathbf{Z}[x]$. (Hint: we have seen this in the lecture. Write $x=y+1$ and show that $f(y+1)$ satisfies the Eisenstein criterion.)
b) Let $\alpha=\zeta+\zeta^{-1}$. Show that α is a root of $g(x)=x^{3}+x^{2}-2 x-1$ and find a degree 2 polynomial $h(x) \in(\mathbf{Q}(\alpha))[x]$ for which $h(\zeta)=0$.
c) By looking at degrees of field extensions, deduce that $g(x)$ is irreducible in $\mathbf{Q}[x]$ and that $h(x)$ is irreducible in $(\mathbf{Q}(\alpha))[x]$. (Note: one can show irreducibility of $g(x)$ directly, and irreducibility of $h(x)$ by observing that $h(x)$ is irreducible in $\mathbf{R}[x]$ and that $\mathbf{Q}(\alpha) \subset \mathbf{R}$, but the point is to have some practice with degrees of algebraic extensions.)

Look at, but do not hand in, the following exercises:

Section 30, exercises 7, 8, 10, 16, 17, 19, 20, 21, 23, 26, 27.
Section 31, exercises 6, 7, 11, 12, 13.

