Problem set 2, due Tuesday, February 28 at the beginning of class

Exercises from Fraleigh:

Section 45, exercises 1-8 (these are quick), 11, 14, 26, 27.
Section 46, exercises 7, 8, 12.
Additional Exercises (also required):
Exercise A2.1: Define integers a_{0}, \ldots, a_{9} by the identity

$$
a_{9} x^{9}+a_{8} x^{8}+\cdots+a_{1} x+a_{0}=\left(8 x^{2}+10 x+14\right)\left(15 x^{7}+9 x^{6}-12 x^{4}+33 x+90\right) .
$$

Find $\operatorname{gcd}\left(a_{0}, \ldots, a_{9}\right)$.
Exercise A2.2: Let R be any commutative ring, and let $a, b \in R$.
a) Recall that $\langle a, b\rangle$ is the subset of R defined by

$$
\langle a, b\rangle=\{c \in R \mid \exists s, t \in R \text { with } c=s a+t b\} .
$$

Carefully prove, yet again, that (i) $\langle a, b\rangle$ is an ideal of R, that (ii) both elements a and b belong to $\langle a, b\rangle$, and that (iii) every ideal $I \subset R$ for which $a, b \in I$ satisfies $\langle a, b\rangle \subset I$. (Interpretation: $\langle a, b\rangle$ is the "smallest" ideal containing a and b.)
b) Now assume $q, r \in R$ satisfy $a=b q+r$. Show that $\langle a, b\rangle=\langle b, r\rangle$. (We are not assuming that r is "small" here, but in practice this result will be used when r is the "remainder" when one divides a by b.)

Exercise A2.3: a) Using the Euclidean algorithm, find the GCD of the following two polynomials in $\mathbf{Z}_{5}[x]$:

$$
f=x^{6}+3 x^{3}+2, \quad g=2 x^{5}+x^{3}+x^{2}+4 x .
$$

Also express the GCD as a linear combination $s f+t g$ for some choice of $s, t \in \mathbf{Z}_{5}[x]$.
b) Find the GCD of the above polynomials by first factoring each of f and g into a product of irreducible polynomials.

Look at, but do not hand in, the following exercises:
Section 45, exercises 10, 15, 17, 22, 23, 25, 29, 31, 32.
Section 46, exercises 10, 11, 16, 22, 23, 24.

