Exercises from Fraleigh:

Section 22, exercises 8, 10, 12, 14, 15, 21, 22.
Section 23, exercises $2,10,12,16,17,18,19,27,28,37$.

Additional Exercises (also required):

Exercise A1.1: Show that all irreducible polynomials in $\mathbf{R}[x]$ have degree 1 or 2. What about irreducible polynomials in $\mathbf{C}[x]$?
(You may use the fact that all polynomials in $\mathbf{C}[x]$ have complex roots, and properties of the complex conjugate $z=x+i y \Rightarrow \bar{z}=x-y i$.)

Exercise A1.2: Factor each of the following polynomials in $\mathbf{Z}_{5}[x]$ into irreducible polynomials:

$$
f=x^{4}+1, \quad g=x^{4}+2, \quad h=x^{4}+4 \quad\left(\text { all in } \mathbf{Z}_{5}[x]\right)
$$

Exercise A1.3: a) Show that the polynomial $x^{4}+x+1$ is irreducible in $\mathbf{Z}_{2}[x]$.
b) Why can you deduce that the polynomial $25 x^{4}+30 x^{3}+33 x+81$ is irreducible in $\mathbf{Q}[x]$?

Look at, but do not hand in, the following exercises:

Section 22, exercises 17, 20, 24, 25, 26, 27, 29, 30, 31.
Section 23, exercises $29,30,31,34,35$.

