Number Theory

https://sites.aub.edu.lb/kmakdisi/

Problem set 10, due Friday, November 18 at the beginning of class

Exercise 10.1: Let k be a nonzero integer and let $N \geq 2$ with N not a square. You will need to use a nontrivial unit $u=a+b \sqrt{N} \in \mathbf{Z}[\sqrt{N}]$. If you like, u can be a fundamental unit.
a) Show that if there exists one solution to the equation $x^{2}-N y^{2}=k$, then there exist infinitely many. (Hint: $\left(x_{0}+y_{0} \sqrt{N}\right) u^{\ell}$.)
b) Use this to find four different solutions (not just via changing the signs of x and y) to the equation $x^{2}-3 y^{2}=13$. (You can easily find a unit $u \in \mathbf{Z}[\sqrt{3}]$ by trial and error.)
c) Show that the equation $x^{2}-3 y^{2}=5$ has no solutions. Suggestion: reduce mod 3 .

Exercise 10.2: Find a fundamental unit in each of $\mathbf{Z}[\sqrt{7}]$ and $\mathbf{Z}[\sqrt{13}]$, and use to find three solutions to each of the equations $x^{2}-7 y^{2}=1, x^{2}-13 y^{2}=1$. (The solutions should be genuinely different, and not just obtained by changing signs.)

Exercise 10.3: Consider the equation $x^{2}-N y^{2}=k$ for arbitrary $k \in \mathbf{Z}$, not just $k= \pm 1$. As always, assume that $N>0$ is not a square. We view the problem in terms of finding an element $\alpha=x+y \sqrt{N} \in \mathbf{Z}[\sqrt{N}]$ whose norm is k.
a) Show that when $k=0$, the only solution is the trivial one $(x, y)=(0,0)$. (This is easy, but not as instant as you might think.)
b) From now on, suppose $k \neq 0, \pm 1$, and let $u \in \mathbf{Z}[\sqrt{N}]$ be a unit with $\operatorname{Norm} u=+1$ and $u>1$. (Take u to be either a fundamental unit or its square.) Show that if a nontrivial solution α exists as above, then some suitable $\alpha^{\prime}=u^{\ell} \alpha=x^{\prime}+y^{\prime} \sqrt{N}$ gives rise to a solution with $1<\alpha^{\prime}<u$. Here $\ell \in \mathbf{Z}$ can be positive or negative.
c) For the above α^{\prime}, consider its conjugate $\overline{\alpha^{\prime}}=x^{\prime}-y^{\prime} \sqrt{N}$. Use the fact $\alpha^{\prime} \overline{\alpha^{\prime}}=k$ to obtain a bound on the size of $\overline{\alpha^{\prime}}$. From the bounds on α^{\prime} and its conjugate, obtain upper and lower bounds for the integers x^{\prime}, y^{\prime}. Thus only finitely many pairs (x^{\prime}, y^{\prime}) need to be considered.
d) The above shows: to see if $x^{2}-N y^{2}=k$ has any solutions, one has to try only a finite number of pairs $\left(x^{\prime}, y^{\prime}\right)$ in a bounded range; then all other solutions are obtained from such solutions $x^{\prime}+y^{\prime} \sqrt{N}$ by multiplying by some power of the unit u. Illustrate this for the equations $x^{2}-10 y^{2}=3$ and $x^{2}-10 y^{2}=31$.

Exercise 10.4: Consider the equation $(*): \quad x^{2}-101 y^{2}=1$.
a) In this part, we want to find all rational solutions to $(*)$, so $(x, y) \in \mathbf{Q}^{2}$. Starting from the easy solution $(x, y)=(-1,0)$, parametrize all the other rational solutions using a variable $t \in \mathbf{Q}$ and a line of slope t passing through $(-1,0)$ which intersects the hyperbola $(*)$ in a second rational point. Give formulas for the coordinates of this second rational point in terms of t.
b) Now we study integral solutions to $(*)$, so $(x, y) \in \mathbf{Z}^{2}$, and we are effectively solving Pell's equation. First, find by trial and error an integral solution $(s, t) \in \mathbf{Z}^{2}$ to the related equation $s^{2}-101 t^{2}=-1$. (It is no loss of generality to stick to $s, t>0$; now find a solution with small values of s, t.) Use this and $\mathbf{Z}[\sqrt{101}]$ to produce a solution $\left(x_{1}, y_{1}\right) \in \mathbf{Z}^{2}$ of equation $(*)$.
(c) Use reduction mod 101 and some extra reasoning that there are no other integral solutions (x, y) to $(*)$ with $1<x<x_{1}$. (This means that you have found the fundamental solution, analogous to our theorem about finding a solution with smallest y. But for this exercise, pretend you do not know this theorem.)

