# Math 261 - Fall 2022 <br> Number Theory <br> https://sites.aub.edu.lb/kmakdisi/ 

## Problem set 7, due Friday, October 28 at the beginning of class

Exercise 7.1: Let $p$ be a prime number of the form $p=4 q+1$ with $q$ prime.
a) Show that $\left(\frac{2}{p}\right)=-1$.
b) Show that 2 is a primitive root modulo $p$.

Exercise 7.2: a) Let $p$ be a prime other than 2 or 7 . Use quadratic reciprocity to show that the value of $\left(\frac{7}{p}\right)$ depends only on $p \bmod 28$. (Hint: the Chinese remainder theorem is useful at one point.)
b) List all the values of $p \bmod 28$ for which $\left(\frac{7}{p}\right)=1$ and those for which $\left(\frac{7}{p}\right)=-1$. You should write them in the form of a table where the first row gives the form of $p$, namely $p=28 k+1, p=28 k+3, \ldots$ and the second row gives the value of $\left(\frac{7}{p}\right)$.
(By the way, why did I skip $28 k+2$ ? What else needs to be skipped? Optional: View the choices of $p \bmod 28$ for which $\left(\frac{7}{p}\right)=1$ as a subset of $(\mathbf{Z} / 28 \mathbf{Z})^{*}$. Do you notice anything interesting about this subset?)
c) Let $n \in \mathbf{Z}$ be any nonzero number (positive or negative). Use quadratic reciprocity (and not the key proposition from class) to show that for $p$ not a factor of $2 n$, the Legendre symbol $\left(\frac{n}{p}\right)$ depends only on $p \bmod 4 n$. Hint: factor $n$, and use the Chinese Remainder Theorem to look at the value of $p \bmod$ each prime factor $q$ of $n$.
d) Improve part (b) to show that if $n \equiv 1 \quad(\bmod 4)$, then $\left(\frac{n}{p}\right)$ depends only on $p \bmod n$. (No fair using Jacobi reciprocity in parts (c) and (d), unless you prove it first.)

Exercise 7.3: Write the numbers 97, 90, and 485 as the sum of two squares (if possible, give two different solutions).

Exercise 7.4: Find the factorizations of the following numbers in $\mathbf{Z}[i]$ (i.e., factor into Gaussian primes, possibly times a unit):

$$
65, \quad 67, \quad 134, \quad 73, \quad 100+i, \quad 510+180 i .
$$

Exercise 7.5: a) Factor 23400 into (a unit times) a product of Gaussian primes in $\mathbf{Z}[i]$.
b) Find a specific $\alpha=a+b i \in \mathbf{Z}[i]$ whose norm is 23400. Try to make a choice of $\alpha$ that is easy to calculate.
c) How many different $\alpha \in \mathbf{Z}[i]$ have norm 23400 ?

Exercise 7.6: Use the Euclidean algorithm to find the GCD (in $\mathbf{Z}[i]$ ) of

$$
\alpha=-14+31 i, \quad \beta=3+24 i .
$$

Write the GCD as a linear combination of $\alpha$ and $\beta$ (with coefficients in $\mathbf{Z}[i]$, of course).

