Math 261 - Fall 2022
 Number Theory
 https://sites.aub.edu.lb/kmakdisi/
 Problem set 6, NOT DUE, for practice before the midterm

Reminder: The midterm exam will be held on Saturday, October 15, at 1 pm in Bliss 205. You may use a nonprogrammable calculator and may bring a single sheet of A4 paper with handwritten notes and formulas on both sides. Next week, I have regular office hours on Wednesday and will also hold additional office hours on Thursday, from 2pm until 4 pm and possibly later.

Exercise 6.1: a) Calculate each of the following for the primes $p=11,13$, and 17:

$$
\left(\frac{-1}{p}\right), \quad\left(\frac{2}{p}\right), \quad\left(\frac{-2}{p}\right), \quad\left(\frac{3}{p}\right), \quad\left(\frac{4}{p}\right), \quad\left(\frac{6}{p}\right)
$$

b) In the cases above when $\left(\frac{a}{p}\right)=1$, find a square root of a modulo p.
c) How many solutions to $x^{2}+2 \equiv 0(\bmod N)$ are there modulo each of the three values of N : (i) $N=11^{2} \cdot 13^{3}$, (ii) $N=13^{4} \cdot 17^{5}$, (iii) $N=11^{6} \cdot 17^{7}$? (Do NOT find the solutions. Just count the number of solutions in $\mathbf{Z} / N \mathbf{Z}$.)

Exercise 6.2: Compute the two Legendre symbols $\left(\frac{6}{37}\right), \quad\left(\frac{11}{31}\right)$ in three ways each:
a) using Euler's criterion;
b) using Gauss' lemma;
c) using quadratic reciprocity. (The statement of quadratic reciprocity will appear in lecture next week.)

Exercise 6.3: Let p be prime with $p \neq 2$.
a) Show that if $\left(\frac{a}{p}\right)=1$, then a cannot be a primitive root $\bmod p$.
b) Show that if a satisfies $\left(\frac{a}{17}\right)=-1$, then a is a primitive root mod 17. Redo for $p=257$.
c) Show that the converse of a is however false in general, by giving an example of an a for which $\left(\frac{a}{13}\right)=-1$, but a is not a primitive root $\bmod 13$.
Exercise 6.4: a) Let p be any prime with $p \geq 5$. Show that the equation

$$
\left(x^{2}-2\right)\left(x^{2}+1\right)\left(x^{2}+2\right) \equiv 0 \quad(\bmod p)
$$

has at least one solution.
b) Show that if furthermore $p \equiv 1(\bmod 8)$, then the above equation has six solutions modulo p.

