Math 341, Modules and Rings I - Fall 2022

Course website: https://sites.aub.edu.lb/kmakdisi/
Problem set 1, due Friday, September 9 at the beginning of class

Exercises from Jacobson, BA I:

Section 2.5, exercises 4, 5.
Section 2.15, exercise 5.

Additional Exercises (also required):

Exercise A1.1: Let R be a ring, not necessarily commutative, and let I, J be (two-sided) ideals of R.
a) The "ideal sum" $I+J$ is defined by

$$
I+J=\{x \in R \mid \exists i \in I, j \in J \text { such that } x=i+j\}
$$

The definition is usually abbreviated to $I+J=\{i+j \mid i \in I, j \in J\}$. Show that $I+J$ is an ideal containing I and J.
b) The "ideal product" $I J$ is defined by
$I J=\left\{x \in R \mid \exists\right.$ finitely many $i_{1}, \ldots, i_{n} \in I, j_{1}, \ldots, j_{n} \in J$ such that $\left.x=i_{1} j_{1}+\cdots+i_{n} j_{n}\right\}$.
Show that $I J$ is an ideal contained in $I \cap J$.
c) When R is a PID (if you like, let $R=\mathbf{Z}$), what do the ideal sum and ideal product mean? In other words, if $\langle a\rangle+\langle b\rangle=\langle s\rangle$, and $\langle a\rangle\langle b\rangle=\langle p\rangle$, what are s and p in terms of a and b ? What about the intersection $\langle a\rangle \cap\langle b\rangle=\langle i\rangle$?
d) Suppose that R is commutative and that $I+J=R$. Show that $I J=I \cap J$.

Exercise A1.2: Let F be a field, and let $R=F[x, y]$ be the ring of polynomials in two variables. Show that the ideal $\langle x, y\rangle$ is not principal. Hence R is not a PID.

Cultural remark: $F[x, y]$ is a UFD, as is $F\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, or more generally $D\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ for D a UFD (for example, $D=\mathbf{Z}$). See Theorem 2.25 in Section 2.16 of BA I.

Exercise A1.3: a) Let R be a PID, and let $I=\langle a\rangle$ be an ideal with a neither zero nor a unit. Consider a finite strictly ascending chain of ideals starting at I ("strictly" means consecutive ideals are never equal, and "finite" just means the chain does not go on forever):

$$
\begin{equation*}
I \subsetneq I_{1} \subsetneq I_{2} \subsetneq \cdots \subsetneq I_{n} . \tag{*}
\end{equation*}
$$

For a given a, what is the largest possible value of n ?
b) Now let $R=\mathbf{Q}[x, y]$. Show that if one starts with the ideal $I=\langle x\rangle$, there exist strictly ascending chains of ideals that can be as long as you like. So the n in $(*)$ is not bounded above in this case. (This also implies that R is not a PID, but the proof in Exercise A1.2 is preferable because it is much more direct.)

Exercise A1.4: Let F be a field. Show that the ring $R=M_{n}(F)$ of $n \times n$ matrices with entries in F has only two ideals, namely $\{0\}$ and R. If the general case gives you trouble, do at least the case $n=2$. (Culture: compare this result to BA I, exercises 2.5.4 and 2.5.8.)

Exercise A1.5: Let $a, b, c, d, s, t \in \mathbf{Z}$, and define u, w by

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{s}{t}=\binom{u}{w} .
$$

a) Show that one GCD is a factor of the other: $\operatorname{gcd}(s, t) \mid \operatorname{gcd}(u, w)$.
b) Show that if the matrix $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ has $\operatorname{det} M= \pm 1$, then in fact $\operatorname{gcd}(s, t)=\operatorname{gcd}(u, w)$.
c) Show more generally that $\operatorname{gcd}(u, w) \mid(\operatorname{det} M) \cdot \operatorname{gcd}(s, t)$.

Remark: this setup generalizes to $\operatorname{gcd}\left(s_{1}, \ldots, s_{n}\right)$, the GCD of n integers, and $M \in M_{n}(\mathbf{Z})$.

Look at, but do not hand in:

BA I, 2.6.5, 2.7.10, 2.7.11, 2.15.4, 2.15.11, 2.15.12, 2.15.13-2.15.16 (partial fractions!).

