Number Theory

https://sites.aub.edu.lb/kmakdisi/

Problem set 4, due Friday, September 30 at the beginning of class

Exercise 4.1: a) Find $\phi(101), \phi(6561)$, and $\phi(25200)$.
b) Compute the remainder of 2^{705} when divided by 101 , and the remainder of 11^{17282} when divided by 25200 .

Exercise 4.2: a) Use the Chinese Remainder Theorem to find all the solutions of the equation $x^{2} \equiv 1 \quad(\bmod 1729)$. (Find the factorization of 1729 first.)
b) Show that for all $a \in \mathbf{Z}$ with $\operatorname{gcd}(a, 1729)=1$, we have $a^{1728} \equiv 1 \quad(\bmod 1729)$. This holds even though 1729 is not prime; one says that 1729 is a Carmichael number.
c) Find a smaller k (i.e., $1<k<1728$) such that for all $a \in \mathbf{Z}$ with $\operatorname{gcd}(a, 1729)=1$, we have $a^{k} \equiv 1 \quad(\bmod 1729)$. Make k as small as possible.

Exercise 4.3: Let p be a prime.
a) Show that $\overline{1+p}$ has multiplicative order p in $\left(\mathbf{Z} / p^{2} \mathbf{Z}\right)^{*}$. Conclude that for $k \geq 2$, the multiplicative order of $\overline{1+p}$ in $\left(\mathbf{Z} / p^{k} \mathbf{Z}\right)^{*}$ is a multiple of p. (Challenge: prove that this order is in fact a power of p.)
b) Conclude that if $p^{2} \mid N$, then there exists $\bar{a} \in(\mathbf{Z} / N \mathbf{Z})^{*}$ whose multiplicative order in $(\mathbf{Z} / N \mathbf{Z})^{*}$ is a multiple of p. (Caution: $1+p$ might not be relatively prime to N. I suggest that you write $N=p^{k} M$, where $k \geq 2$ and $p \nmid M$, and choose a by choosing $a \bmod p^{k}$ and $a \bmod M$ separately and invoking the Chinese Remainder Theorem.)
c) Deduce that N is not a Carmichael number. (N.B., this shows that if N is a Carmichael number, then it is squarefree, i.e., it is the product of distinct prime numbers.)

Exercise 4.4: a) Factor $N=144869$ and find $L=\phi(144869)$.
b) Consider the map $f:(\mathbf{Z} / 144869 \mathbf{Z})^{*} \rightarrow(\mathbf{Z} / 144869 \mathbf{Z})^{*}$ given by $f(\bar{x})=\bar{x}^{103}$. Show that f is a bijection by finding an inverse map of the form $g(\bar{y})=\bar{y}^{e}$ for some e that you must find. (Hint: e is determined by a certain equation $\bmod L$.)
c) Solve for $\bar{x} \in(\mathbf{Z} / 144869 \mathbf{Z})^{*}$ that satisfies the equation $\bar{x}^{103}=\overline{12}$. You will probably need to use the repeated squaring algorithm - look it up! - for quickly computing powers mod 144869.
d) How many $\bar{x} \in(\mathbf{Z} / 144869 \mathbf{Z})^{*}$ satisfy $\bar{x}^{144868}=\overline{1}$? What does this say about the probability of finding a "false positive" to the Fermat test for primality?

Cultural note for $(\mathrm{a}-\mathrm{c})$: if N is very large, and one does not know the factorization of N, then it is believed that it is difficult to find L and e; so the map f is an "encryption" map that (we hope) can be only "decrypted" (i.e., inverted) by the person who chose large primes p, q and published only their product N and the number $d=103$. This is the basis of the RSA cryptographic system, which you should look up in Section 8.8 of Davenport.

Exercise 4.5: Fix $n>0$.
a) If $d>0$ and $d \mid n$, show that the number of elements \bar{a} in $\mathbf{Z} / n \mathbf{Z}$ such that $\operatorname{gcd}(a, n)=d$ is equal to $\phi(n / d)$.

Hint: write $a=d a^{\prime}$ and $n=d n^{\prime}$. As an example of what you need to prove, the number of elements \bar{a} in $\mathbf{Z} / 15 \mathbf{Z}$ with $\operatorname{gcd}(a, 15)=3$ is exactly $\phi(5)=4$: the values of \bar{a} are $\overline{3}, \overline{6}, \overline{9}, \overline{12}$.
b) Show that $n=\sum_{d \mid n} \phi(n / d)$, and deduce that $n=\sum_{d \mid n} \phi(d)$. Hint for the first part: separate the elements in $\mathbf{Z} / n \mathbf{Z}$ according to their GCD with n.
c) Show that the equations in part (b) allow one to compute $\phi(n)$ recursively by writing the equations for all n^{\prime} with $n^{\prime} \mid n$. For example, if $n=15$, one can combine the results for all $n^{\prime} \in\{1,3,5,15\}$ to get $1=\phi(1) ; 3=\phi(1)+\phi(3) ; 5=\phi(1)+\phi(5) ;$ and $15=\phi(1)+\phi(3)+\phi(5)+\phi(15)$. This uniquely determines (in order) the numbers $\phi(1), \phi(3), \phi(5), \phi(15)$.

Exercise 4.6 (optional, for extra credit): Look up the Moebius inversion formula, and combine it with the results of Exercise 4.5 to deduce that

$$
\phi(n)=n \prod_{p \mid n, p \text { prime }}\left(1-\frac{1}{p}\right)
$$

