Math 261 - Fall 2022
 Number Theory
 https://sites.aub.edu.lb/kmakdisi/

Problem set 3, due Friday, September 23 at the beginning of class

Exercise 3.1: Find all solutions to the following systems of linear equations for $(\bar{x}, \bar{y}) \in$ $(\mathbf{Z} / 25 \mathbf{Z})^{2}$. Hint: try to eliminate variables, but make sure that you always maintain an equivalent system of equations.

$$
\left\{\begin{array}{ll}
2 x-y \equiv 1 & (\bmod 25) \\
x+4 y \equiv 8 & (\bmod 25)
\end{array},\left\{\begin{array}{ll}
2 x-y \equiv 0 & (\bmod 25) \\
x+2 y \equiv 0 & (\bmod 25)
\end{array},\left\{\begin{array}{ll}
2 x-y \equiv 1 & (\bmod 25) \\
x+2 y \equiv 8 & (\bmod 25)
\end{array} .\right.\right.\right.
$$

Also give a specific choice for a, b for which the system $\left\{\begin{array}{ll}2 x-y \equiv a & (\bmod 25) \\ x+2 y \equiv b & (\bmod 25)\end{array}\right.$ has NO solution. (Prove that your choice of a, b works.)

Exercise 3.2: a) Find the remainder of 2^{110236} divided by 11.
b) Find the remainder of 10^{110236} divided by 13 .

Hints: show first that $2^{10} \equiv 1 \quad(\bmod 11)$, and $10^{6} \equiv 1 \quad(\bmod 13)$.
Exercise 3.3: a) Show that if p is a prime, then $\mathbf{Z} / p \mathbf{Z}$ has no zero divisors. (In other words, $\bar{a} \bar{b}=\overline{0} \Rightarrow \bar{a}=\overline{0}$ or $\bar{b}=\overline{0}$.)
b) Show that if p is a prime other than 2 , then the equation $x^{2} \equiv 4(\bmod p)$ has exactly two solutions. However, give an example where $x^{2} \equiv 3(\bmod p)$ has no solutions.
c) Find all solutions to $x^{2} \equiv 4(\bmod 15)$. (You may need to use trial and error.)
d) Find all solutions to $x^{2}+10 x+6 \equiv 0(\bmod 15)$. Hint: complete the square and use c).

Exercise 3.4: Assume that $\bar{a} \in(\mathbf{Z} / m \mathbf{Z})^{*}$ has multiplicative order k. Let $\ell \in \mathbf{Z}$, and take $\bar{b}=\bar{a}^{\ell}$. Suppose that $\operatorname{gcd}(k, \ell)=1$.
a) Show that \bar{b} also has order k.
b) Show that \bar{a} can be writen as a power of \bar{b} (i.e., $\bar{a}=\bar{b}^{n}$ for some n).

Exercise 3.5: a) Suppose given numbers a and m, such that
$a^{360} \equiv 1 \quad(\bmod m), \quad a^{180} \not \equiv 1 \quad(\bmod m), \quad a^{120} \not \equiv 1 \quad(\bmod m), \quad a^{72} \not \equiv 1 \quad(\bmod m)$.
Show that the order of $a \bmod m$ is exactly 360 . (Hint: $360=2^{3} 3^{2} 5,180=360 / 2$, $120=360 / 3$, and $72=360 / 5$.)
b) Formulate and prove a general theorem giving a criterion for a to have order $k \bmod$ m, under conditions similar to those in part a).

Exercise 3.6: If p is a prime other than 2 or 5 , show that p divides infinitely many numbers of the form

$$
11,111,1111,11111,111111,1111111, \ldots
$$

Suggestion: this is easy if $p=3$. Otherwise, consider the multiplicative order of 10 $(\bmod p)$.

