Math 261 - Fall 2022
 Number Theory
 https://sites.aub.edu.lb/kmakdisi/

Problem set 2, due Friday, September 16 at the beginning of class

Exercise 2.1: Use the Euclidean algorithm to find the following GCDs:

$$
\operatorname{gcd}(14784,14853960), \quad \operatorname{gcd}(93933,99939), \quad \operatorname{gcd}(10001,100001) .
$$

(Note: just do the standard Euclidean algorithm and not the extended Euclidean algorithm; no need to express the GCD as a linear combination of the two numbers. In other words, just find the entries n_{i} in the first column, without finding the x_{i} and y_{i} in the second and third columns.)

Exercise 2.2: a) By considering the prime factorizations of a and b, show that the equation $a^{2}=2 b^{2}$ does not have any solutions with $a, b \in \mathbf{Z}$, other than the trivial solution $a=b=0$. Use this fact to show that $\sqrt{2} \notin \mathbf{Q}$.
b) More generally, let $n \in \mathbf{Z}$ with n not equal to the square of an integer. Show that $\sqrt{n} \notin \mathbf{Q}$. (If you are stuck, try to first show in scratch work the special case $\sqrt{2100} \notin \mathbf{Q}$. That should give you a feel for the general case.)

Exercise 2.3: Let $a, b \in \mathbf{Z}$ be nonzero integers. Suppose that $a b$ is a square, i.e., there exists $y \in \mathbf{Z}$ such that $a b=y^{2}$.
a) If furthermore $\operatorname{gcd}(a, b)=1$, then show that a is either a square, or the negative of a square (i.e., there exists $r \in \mathbf{Z}$ such that $a=r^{2}$ or $a=-r^{2}$).
b) If instead $\operatorname{gcd}(a, b)=p$ for a prime p, what can you say about a ?
c) If $x, y \in \mathbf{Z}$ satisfy $y^{2}=x^{3}+p x$ for a prime p, show that x is either a square or p times a square (so $x=\ell^{2}$ or $x=p \ell^{2}$ for some integer ℓ).

Exercise 2.4: a) Find all (integer) solutions of each of the following equations:

$$
363 x+400 y=1, \quad 87 x+105 y=0, \quad 87 x+105 y=54 .
$$

b) Find all solutions of $10 x+14 y+35 z=103$. (Hint: $10 x+14 y$ can equal any even number $2 w$.)
c) Given a, b, c, show that the equation $a x+b y+c z=m$ is solvable if and only if m is a multiple of the GCD (a, b, c). (Bonus: find all the solutions.)
d) Solve each of the following congruences (the first two should look familiar):

$$
\begin{aligned}
363 x & \equiv 1 \quad(\bmod 400), & & 87 x
\end{aligned} \begin{array}{rlrl}
& \equiv 54 & (\bmod 105) \\
29 x & \equiv 18 & (\bmod 60), & \\
28 x & \equiv 18 & (\bmod 60)
\end{array}
$$

Exercise 2.5: a) Let p be prime and let $a, b \in \mathbf{Z}$. Suppose that $\operatorname{gcd}\left(a, p^{2}\right)=p$ and $\operatorname{gcd}\left(b, p^{3}\right)=p^{2}$. Find $\operatorname{gcd}\left(a b, p^{10}\right)$ and $\operatorname{gcd}\left(a+b, p^{10}\right)$.
b) For p prime and $n \in \mathbf{Z}$, define

$$
v_{p}(n)= \begin{cases}k, & \text { if } n=p^{k} \ell \text { with } p \nmid \ell, \\ " \infty, & \text { if } n=0\end{cases}
$$

Show that for all a, b we have $v_{p}(a b)=v_{p}(a)+v_{p}(b)$ and $v_{p}(a+b) \geq \min \left(v_{p}(a), v_{p}(b)\right)$. What can you say about $v_{p}(a+b)$ if $v_{p}(a) \neq v_{p}(b)$?

