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Filtered lattice space

I A filtered lattice Euclidean space is (R∞,Z∞,Q) consisting of
I direct limits

R∞ = lim−→
k

Rk , Z∞ = lim−→
k

Zk ,

under standard embeddings ik : Rk → Rk+1, and
I a family Q = (Qk )k≥1 of inner products

Qk : Rk ⊗ Rk → R,

such that
Qk+1|Rk×Rk = Qk , Qk (Zk × Zk ) ⊂ Q.

I For a field K with Q ⊂ K ⊂ R, we denote by LK(Ck ) = LK(Kk ⊗ C)
the space of linear forms on Ck which take K-values on Kk .



Meromorphic germs with linear poles
I On the filtered lattice space (R∞,Z∞), a meromorphic germ f on

Rk ⊗ C is said to have K-linear poles at zero if there are vectors
L1, . . . ,Lk ∈ (Zk )∗ ⊗K (possibly with repetitions) such that

f Πk
i=1Li

is a holomorphic germ at zero.
I Let MK(Ck ) = MK(Rk ⊗C) (resp. MK+(Ck ) = MK+(Rk ⊗C)) denote

the space of meromorphic germs at zero with K-linear poles (resp.
holomorphic germs).

I There are natural embeddings and direct limits

pk : MK(Ck )→MK(Ck+1), pk : MK+(Ck )→MK+(Ck+1),

MK = MK(C∞) = lim−→
k

MK(Ck ), MK+ = MK+(C∞) = lim−→
k

MK+(Ck )

I By restriction, we also let

LK := LK(C∞) = lim−→
k

LK(Ck )

be the space of K-linear forms.



Polar germs
I An inner product Q on (R∞,Z∞) induces an inner product in LK(C∞)

which we still denote by Q.
I A germ of meromorphic functions at zero is called a polar germ in

Ck with K-coefficients if it is of the form

h(`1, . . . , `m)

Ls1
1 · · · L

sn
n

,

where
I h lies in MK+(Cm),
I `1, . . . , `m,L1, . . . ,Ln lie in LK(Ck ), with L1, . . . ,Ln linearly

independent, such that

Q(`i ,Lj) = 0 ∀i ∈ {1, . . . ,m}, j ∈ {1, . . . ,n},

I s1, . . . , sn are positive integers.
I Let MQ

K− denote the space spanned by polar germs.
I MQ

Q has a rich structure: Laurent expansion, residues, gradations,
etc.



Minimal subtraction
I There is a decomposition

MQ
K = MQ

K+ ⊕MQ
K−.

I The minimal subtraction scheme on (M,M+) is the projection:

π+ : MQ
K →MQ

K+

alone MQ
K−.

I In the one variable case,

π+ = πQ
+ : M(C) = C[z−1, z]] −→M+(C) = C[[z]],

f (z) =
∞∑

k=−K

ak zk 7→
∞∑

k=0

ak zk .

I This is used in the one variable regularization/renormalization, as in
the algebraic approach of Connes and Kreimer.



Simplex fractions
I For any subset U of MK, let QU denote the Q-subspace of MK

spanned by U. For any Q-subspace V of M, let V denote Q + V
where Q stands for the constant functions.

I A simplex fraction is a fraction of the form 1
Ls1

1 ···L
sk
k

, where

L1, . . . ,Lk ∈ LQ are linearly independent and si ∈ Z>0, i = 1, . . . , k .
I Let F be the set of all simplex fractions over Q. Then for any inner

product Q in (R∞,Z∞), we have QF ⊂MQ
Q−.

I Let E := {e1,e2, . . .} be an orthonormal basis of R∞ with respect to
Q. Let zi be the coordinate function corresponding to ei .

I A Chen fraction is of the form

f
(

s1,...,sk

u1,...,uk

)
:=

1
zs1

u1 (zu1 + zu2)s2 · · · (zu1 + zu2 + · · ·+ zuk )sk
,

ui , si ∈ Z>0, k ∈ N,ui 6= uj if i 6= j .
I Let FCh = FCh,Q,E denote the set of Chen fractions.



Locality Sets

I A locality set is a set X with a binary symmetric relation

> := X ×> X ⊆ X × X ,

called a locality relation.
I For x1, x2 ∈ X , denote x1>x2 if (x1, x2) ∈ >.
I For U ⊂ X , denote its polar subset

U> := {x ∈ X | (x ,U) ⊆ >}.

I For locality sets (X ,>X ) and (Y ,>Y ), a map f : X → Y is called a
locality map if

x1>X x2 =⇒ f (x1)>Y f (x2), ∀x1, x2 ∈ X .



Examples of locality sets
I For any nonempty set X , being distinct x1>x2 ⇔ x1 6= x2 defines a

locality relation on X .
I f , f ′ ∈MQ are Q-orthogonal (also called locality independent),

denoted f ⊥Q f ′, if f = f (L1, . . . ,Lk ), f ′ = f ′(L′1, . . . ,L
′
k ′) such that

Q(Li ,L′j) = 0, ∀1 ≤ i ≤ k ,1 ≤ j ≤ k ′.

I This makes MQ into a locality set.
I Example. Let (e1,e2, . . .) be an orthonormal basis of (R∞,Z∞,Q).(

(z1, z2) 7→ 1
z1 + z2

)
⊥Q ((z1, z2) 7→ z1 − z2) .

I The map

f : X →MQ, n 7→ 1
zn
,n > 1,

is a locality map.



Locality algebras
I A locality vector space is a vector space V equipped with a locality

relation > which is compatible with the linear structure on V :

X ⊆ V =⇒ X> ≤ V .

I A locality algebra over K is a locality vector space (A,>) over K
together with a map

mA : A×> A→ A, (x , y) 7→ x · y = mA(x , y) for all (x , y) ∈ A×> A

having the following variations of the associativity and distributivity.
(a) For x , y , z ∈ A,

x>y , x>z, y>z =⇒ (x · y)>z, x>(y · z), (x · y) · z = x · (y · z).

(b)

x>z, y>z =⇒ (x + y) · z = x · z + y · z, z · (x + y) = z · x + z · y ,
(kx) · z = k(x · z), x · (kz) = k(x · z), k ∈ K .

I A unitary locality algebra is a nonunitary locality algebra (A,>,mA)
with a unit 1A such that, for each u ∈ A, we have 1A>u and

1A · x = x · 1A = x .



Locality algebra homomorphisms

I Given locality algebras (Ai ,>i), i = 1,2, a (resp. unitary) locality
algebra homomorphism is a linear map ϕ : A1 −→ A2 such that

if a>1,b then ϕ(a)>2ϕ(b) and ϕ(a · b) = ϕ(a) · ϕ(b)

(resp. and ϕ(1A1) = 1A2).
I The pair (MQ,⊥Q) (resp. (MQ+,⊥Q)) is a unitary locality algebra and

the projection
πQ
+ : MQ = MQ

Q+ ⊕MQ
Q− →MQ

Q+

along MQ
Q− is a unitary locality algebra morphism.

I For a unital locality algebra (A,>), a unitary locality endomorphism
of A is a locality automorphism if it is invertible, preserves the unit,
and the inverse map is a locality algebra homomorphism. Let
Aut>(A) denote the set of locality automorphisms of A.

I Aut>(A) forms a group for the composition.



Locality algebras of meromorphic germs
I Given a set S of simplex fractions, let

ΠQ(S) =

{∏
i

si

∣∣∣∣∣ si ∈ S,∀i , si ⊥Q sj , ∀i 6= j

}

be the set of simplex fractions locality generated by S.
I The subspace of QF

QΠQ(S) :=

{∑
i

ci Si

∣∣∣∣∣ ci ∈ Q,Si ∈ ΠQ(S)

}

spanned by ΠQ(S) is a nonunital locality subalgebra of QF.
I The set

MQ
Q+(ΠQ(S)) :=

{
h0 +

∑
i

hiSi ,

∣∣∣∣∣ h0,hi ∈MQ+,hi ⊥Q Si

}

is a unital locality subalgebra of MQ.



Examples
I A Chen fraction is of the form

f
(

s1,...,sk

u1,...,uk

)
:=

1
zs1

u1 (zu1 + zu2)s2 · · · (zu1 + zu2 + · · ·+ zuk )sk
,

ui , si ∈ Z>0, k ∈ N,ui 6= uj if i 6= j .
I The set FCh = FCh,Q,E of Chen fractions generates the locality

subalgebra MCh
Q := MQ

Q+

(
ΠQ(FCh)

)
.

I For a subset J of Z>0, denote zJ :=
∑

j∈J zj .
I A Feynman fraction is a simplex fraction

1∏
J∈J zsi

J
, si > 0,

for a finite collection J of subsets of N.
I The set FFe = FFe,Q,E of Feynman fractions generates the locality

subalgebra MFe
Q := MQ

Q+

(
ΠQ(FFe)

)
.



Locality polynomial algebras

I We shall use the following locality version of polynomial algebras.
I Let (A,>) be a locality algebra. Let X be a subset of A.
I A locality monomial from X is a product x1 · · · xr where xi>xj for

i 6= j .
I The set X is called locality algebraically independent if the locality

monomials from X are linearly independent.
I The set X is called a locality generating set of (A,>) if the only

locality subalgebra of (A,>) containing X is A itself.
I The locality algebra (A,>) is called a locality polynomial algebra

generated by X if X is locality algebraically independent, and is a
locality generating set of (A,>).



Locality Galois groups
I Let

A := MQ+

(
ΠQ(S)

)
be the MQ

Q+-subalgebra of MQ generated by a set S of simplex
fractions.

I The set

GalQ(A/MQ+) :=
{
ϕ ∈ AutQ(A)

∣∣∣ ϕ restricts to the identity onMQ+

}
defines a group, which we call the locality Galois group of A over
MQ+.

I Define a subset of GalQ(A/MQ+) by

GalQRes(A/MQ+) :=

{
ϕ ∈ GalQ(A/MQ+)

∣∣∣ ϕpreserves the p-residue,
d-residue and B

}
for B = Q(ΠQ(S)).



Group structure
I The following theorem shows that an element of AutQRes(B) can be

extended to an element of GalQRes(A/MQ+).

I Theorem. Let B = QΠQ(S).
1. Any element ϕ ∈ AutQRes(B) uniquely extends to an element of

GalQRes(A/MQ+) defined by

ϕ̃

(
h0 +

∑
i

hiSi

)
:= h0 +

∑
i

hiϕ(Si )

for any
f = h0 +

∑
i

hiSi ∈ A,hi ∈MQ+,Si ∈ ΠQ(S).

2. The subset GalQRes(A/MQ+) ⊆ GalQ(A/MQ+) is a subgroup. Taking
restriction to B gives rise to a group isomorphism

GalQRes(A/MQ+) ∼= AutQRes(B).



Locality generalised evaluators
I We now consider the action of the locality Galois group on

generalised evaluators. Let A be a locality subalgebra of the algebra
MQ equipped with the locality relation ⊥Q.

I A locality generalised evaluator E on the locality algebra (A,⊥Q) is
a linear form E : A→ C, such that

f1 ⊥Q f2 =⇒ E(f1 · f2) = E(f1) · E(f2),

E(h) = h(0),

for all h ∈MQ+ and f1, f2 ∈ A. We use E(A) = EQ(A) to denote the
set of locality generalized evaluators on (A,⊥Q).

I Let ev0 : MQ+ → Q be the evaluation at 0 defined as ev0(h) = h(0).
Then for the map πQ

+ : MQ →MQ+, the composition

EQ
MS := ev0 ◦ πQ

+ (1)

is a locality generalised evaluator on A, called the locality minimal
subtraction scheme.



Transitive group action

I The group GalQ(A/MQ+) acts on EQ(A):

GalQ(A/MQ+)× EQ(A)→ EQ(A) : (g,E) 7→ Eg := E ◦ g−1.

I Theorem. Let A = MQ
Q+(ΠQ(S)) be a simplex locality subalgebra of

M. Provided QΠQ(S) is a locality polynomial subalgebra of QF, then
a locality generalised evaluator E on A factorises through the
minimimal subtraction scheme EQ

MS, i.e, there is ϕ̃ ∈ GalQRes(A/MQ+)
such that

EQ
MS ◦ ϕ̃ = E.

I In this respect, GalQRes(A/MQ+) can be regarded as a renormalisation
group on the generalised locality evaluators (regarded as regulators).



Ordered fractions
I Let (U,≤) be a countable well-ordered set equipped with an

irreflexive locality relation >. let

L : U → LQ, u 7→ Lu,u ∈ U,

be a map, parameterizing a family of linear forms parameterised by
U.

I For ui in U, si ≥ 1,1 ≤ i ≤ k , define the ordered fraction (with
respect to L)

fL
(

s1,...,sk

u1,...,uk

)
:=

1
Ls1

u1(Lu1 + Lu2)s2 · · · (Lu1 + · · ·+ Luk )sk
.

I Define the set of ordered fractions (with respect to L)

FL :=

{
fL
(

s1,...,sk

u1,...,uk

) ∣∣∣∣ si ≥ 1,ui ∈ U,1 ≤ i ≤ k , k ≥ 0
}
⊆ F. (2)

I Define L : Z>0 → LQ by L(i) = zi . The fraction 1
(z1+z2)(z2+z3)

is not an
ordered fraction.



Locality polynomial algebras
I Let QFL be the Q-subspace spanned in QFL.
I When L = LwCh : Z>0 → LQ is given by L(u) = zu, then

fL
(

s1,...,sk

u1,...,uk

)
= fwCh

(
s1,...,sk

u1,...,uk

)
and FL = FwCh is the set of weak Chen fractions for applications to
multiple zeta values.

I Consider

FL
loc := Q

{
fL
(

s1,...,sk

u1,...,uk

) ∣∣∣∣ si ≥ 1,ui ∈ U,ui>uj ∈ U,
1 ≤ i 6= j ≤ k , k ≥ 0

}
⊆ QF

and the Q-subspace QFL
loc of QF.

I Theorem. Let (U,≤,>) be a countable well-ordered set with an
irreflexive locality relation >. If the map L : (U,>)→ (LQ,⊥Q) is a
locality map:

x>y ⇒ Lx ⊥Q Ly , ∀x , y ∈ U,

then the locality algebra QFL
loc is a locality polynomial algebra.



Examples: Chen fractions

I Let U be Z>0 with the natural order and the locality relation

n>m⇔ n 6= m.

For L : Z>0 → LQ, i 7→ zi , i ∈ Z>0, The set FL
loc of ordered fractions is

the set FCh of Chen fractions.



Examples: Speer fractions
I Let U be the set Pfin(Z>0) of nonempty finite subsets of Z>0. The

order is the lexicographic order: for elements

I := {i1 > i2 > · · · > ir}, J := {j1 > j2 > · · · > js}

in Pfin(Z>0), define I ≥ J if either the first nonzero element in the
sequence

i1 − j1, i2 − j2, . . . , imin{r ,s} − jmin{r ,s}

is positive, or the above sequence of numbers are all zero and r > s.
The locality relation in Pfin(Z>0) is:

I>J ⇔ I ∩ J = ∅.
I Define L : Pfin(Z>0)→ LQ, I 7→ zI :=

∑
i∈I zi , ∀I ∈ Pfin(Z>0).

I Then the fractions fL
(

s1,...,sk

I1,...,Ik

)
, called Speer fractions, are of the

form
1

zs1
I1

(zI1 + zI2)s2 · · · (zI1 + · · ·+ zIk )sk
.

I Let FSp denote the set formed by the Speer fractions.



Applications

I QFCh and QFSp are locality polynomial algebras.
I As a direct consequence of the general theorem, we obtain
I The space EQ(MCh

Q )
(
resp. EQ(MSp

Q )
)

of locality generalized

evaluators on the locality algebra
(
MCh

Q ,⊥Q
) (

resp.
(
M

Sp
Q ,⊥Q

))
is

a homogeneous space of GalQ
(
MCh

Q /MQ+

) (
resp.

GalQ
(
M

Sp
Q /MQ+

))
. In other words, these groups act transitively on(

MCh
Q ,⊥Q

) (
resp.

(
M

Sp
Q ,⊥Q

))
.

I We next show that the latter example is related to the classical work
of Speer on analytic renormalization.



Speer’s s-families
I For a Feynman graph G, a family E of subgraphs of G is called a

singularity family or simply an s-family if
I (1) every element in E is either 2-connected or a single line. Let E′

denote the subset of 2-connected elements in E;
I (2) E is nonoverlapping, that is, for H1,H2 ∈ E, either H1 ⊂ H2 or

H2 ⊂ H1 or H1 ∩ H2 = ∅;
I (3) no union of two or more disjoint elements is 2-connected;
I (4) E is maximal with these properties.



s-families in regularization

I The generalized Feynman amplitude T of G (regularized by
introducing a variable λ` to every edge ` of G) has a decomposition

T =
∑
E

TE, the sum is over all s-families of G.

I For an s-family E of G, and H ∈ E′, let

Λ(H) :=
∑

`∈L(H)

(λ` − 1),

where L(H) is the set of edges of H.
I When renormalizing T at λ` = 1, ` ∈ L(G), the singularities are of the

form ( ∏
H∈E′

Λ(H)

)−1

.



s-families and Speer fractions
I By a change of variables zi = λ`i − 1, with an ordering `1, . . . , `|L(G)|

of L(G), the Λ(H) corresponds to the linear form zI(H), for
I(H) = {i | `i ∈ L(H)}.

I So we only need to deal with germs of the form( ∏
H∈E′

zI(H)

)−1

h

for a holomorphic germ h.
I Proposition. For any s-family E of G, the fraction( ∏

H∈E′
zI(H)

)−1

is a linear combination of Speer fractions.

I Thank You!
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