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The equivalence problem

One of the basic problems in Complex Analysis is to understand
whether two objects can be identified via an invertible holomorphic
map (biholomorphism).

Typical objects of interest are open domains:

• two simply connected domains in C are always biholomorphic

• instead, the ball {|z1|2 + |z2|2 < 1} ⊂ C2 and the bidisc
{|z1| < 1, |z2| < 1} ⊂ C2 are not biholomorphic

or real submanifolds:

• two real-analytic curves in C are locally biholomorphic

• the paraboloid {Im z2 = |z2|2} ⊂ C2 and the hyperplane
{Im z2 = 0} ⊂ C2 are not biholomorphic.

In fact, a common approach to understand the equivalence of domains
is to study the equivalence of their boundaries.
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The equivalence problem

The solution of this type of problems must necessarily pass through
the identification and study of suitable invariants.

In the case of the ball and the bidisc, one can for example show that
the respective automorphism groups are not (algebraically)
isomorphic.

The comparison of submanifolds is often carried out by means of
invariant tensors. The most important example is the Levi form, an
Hermitian form whose signature is preserved by biholomorphic maps.
The Levi form is positive definite on the paraboloid, and vanishes
identically on the hyperplane.



Invariants Segre varieties / chains Segre varieties / extremal discs Idea of the proof Extremal discs / chains

The equivalence problem

The solution of this type of problems must necessarily pass through
the identification and study of suitable invariants.

In the case of the ball and the bidisc, one can for example show that
the respective automorphism groups are not (algebraically)
isomorphic.

The comparison of submanifolds is often carried out by means of
invariant tensors. The most important example is the Levi form, an
Hermitian form whose signature is preserved by biholomorphic maps.
The Levi form is positive definite on the paraboloid, and vanishes
identically on the hyperplane.



Invariants Segre varieties / chains Segre varieties / extremal discs Idea of the proof Extremal discs / chains

The equivalence problem

The solution of this type of problems must necessarily pass through
the identification and study of suitable invariants.

In the case of the ball and the bidisc, one can for example show that
the respective automorphism groups are not (algebraically)
isomorphic.

The comparison of submanifolds is often carried out by means of
invariant tensors. The most important example is the Levi form, an
Hermitian form whose signature is preserved by biholomorphic maps.
The Levi form is positive definite on the paraboloid, and vanishes
identically on the hyperplane.



Invariants Segre varieties / chains Segre varieties / extremal discs Idea of the proof Extremal discs / chains

Invariant metrics

A wealth of different metrics naturally associated to domains Ω ⊂ Cn
provide other important, well studied invariants. Here we will just
just recall two of them.

Bergman metric

The space of L2 holomorphic functions defined on Ω has the strong
property that the evaluation functional f → f(z) is continuous in the
L2 metric, and can thus be represented as an integral

f(z) =

∫
Ω

K(z, ζ)f(ζ)dζ ∧ dζ.

The reproducing kernel K(z, ζ) is called the Bergman kernel. Its
values on the diagonal can be used to define a Hermitian metric on Ω
as ∂∂ logK, called the Bergman metric.
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Invariant metrics

A wealth of different metrics naturally associated to domains Ω ⊂ Cn
provide other important, well studied invariants. Here we will just
just recall two of them.

Kobayashi metric
For any p ∈ Ω, the (infinitesimal) Kobayashi metric assigns to a
vector ξ ∈ Tp(Cn) the number

KΩ (p, ξ) := inf

{
1

λ
> 0 | f : ∆→ Ω holomorphic, f (0) = p, f ′(0) = λξ

}
which measures “how large” a disc passing through p and tangent to ξ
can be made to fit in Ω.
The integrated version of of this metric is the Kobayashi
(pseudo)distance.
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The Kobayashi metric

The Kobayashi metric and distance can degenerate, notably in case Ω
contains (the holomorphic image of) a whole complex line. For
instance the metric vanishes for Ω = Cn.

Also, the Kobayashi metric is generally not Hermitian (it is instead a
Finsler metric), which means that it cannot be analyzed by means of
tools like the curvature tensor.

Instead, one usually tries to study the metric by means of extremal
discs, that is, discs which actually realize the infimum in the
definition, so that their derivative at p is as large as possible. The
existence of extremal discs is guaranteed at least if Ω is bounded, but
the study of their boundary behavior is subtle.
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Invariants families of curves

Let M ⊂ Cn be a real-analytic submanifold; more in particular our
focus will be on the case when M is a real hypersurface of C2. Some
biholomorphic invariants associated to M can be described in terms
of special families of curves on the manifold. Notable examples are

• (boundaries of) stationary discs attached to M

• (traces of) Segre varieties

• chains (if M is Levi-nondegenerate)

In the pursuit of understanding the relative behavior of these
invariants, it is natural to ask in which cases they give rise to the
same families of curves on M .
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Stationary discs

Let M ⊂ Cn be a real hypersurface, and denote by ∆ the unit disc in
C. Let f : ∆→ Cn be a map holomorphic on ∆ and continuous up to
the boundary. Then f is called a stationary disc for M if

• it is attached to M , that is f(ζ) ∈M for all ζ ∈ b∆
• there exists a continuous function c : b∆→ R∗ such that the map

b∆ 3 ζ → ζc(ζ)∂ρ(f(ζ)) ∈ Cn

extends holomorphically to ∆.

Here ρ : Cn → R is a defining function for M and ∂ρ is its complex

gradient, i.e. ∂ρ =
(
∂ρ
∂z1

, . . . , ∂ρ∂zn

)
.
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Stationary discs

Stationary discs were introduced by Lempert (’81) in the context of
the study of the Kobayashi metric in strictly convex domains.
Extremal discs for the Kobayashi metric are proper and geodesic in
this setting, and satisfy the stationarity condition.

In the setting of strictly pseudoconvex domains, things are more
subtle, and a general extremal disc may fail to be proper. However,
works of Huang (’94) show that extremal discs which are sufficiently
close to the boundary are again proper and geodesics.

If M is a sphere, then the extremal discs are given by (intersections
with the ball of) complex lines.
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Segre varieties

Assume that M ⊂ Cn is real-analytic and is written as
M = {z ∈ Cn : ρ(z, z) = 0}, where ρ : Cn → R is of class Cω. For any
p ∈ Cn one defines the corresponding Segre variety as
Sp = {z ∈ Cn : ρ(z, p) = 0}.

Some facts about Segre varieties

• if p is close enough to M then Sp is not empty

• p ∈M iff p ∈ Sp, and q ∈ Sp iff p ∈ Sq
• if M is strongly pseudoconvex and p 6∈M is close enough to M ,

then Sp ∩M is either empty or a 2n− 3 dimensional manifold.

If n = 2, the traces of Sp on M thus form a family of 1-dimensional
curves. If M is a sphere, then the Segre varieties are given by complex
lines.
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Chains

Suppose that M ⊂ Cn is Levi non-degenerate. In this case, a
distinguished invariant family of curves, called chains was identified in
Chern-Moser (’75) in the context of the solution to the equivalence
problem in that class.

Chains are transversal to the complex tangent distribution, and are
characterized intrinsically by the vanishing of a certain connection
defined on a principal bundle naturally associated to M . As such,
they solve a system of differential equations of order 2.

If M is a hyperquadric, then the chains are given by intersections
with complex lines.
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Comparison of the invariant families

As transpired from the discussion above, these invariants do give rise
to the same family of curves if M ⊂ C2 is a sphere. This immediately
suggest the following

Basic question: is the sphere the only case for which these notions
coincide?
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Segre varieties and chains

An affirmative answer was given in Faran (’81) for the case of Segre
varieties vs. chains:

Theorem (Faran)
Let M ⊂ C2 be a strongly pseudoconvex real-analytic hypersurface. If
the intersections of all Segre varieties with M are chains, then M is
locally spherical (i.e. locally biholomorphically equivalent to the
sphere).

A version of this result is also obtained in higher dimension, where
the assumption, however, involves the intersection of M with
sufficiently many Segre varieties rather than only one.
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Segre varieties and extremal discs

Our first aim was to study the analogous question of the relationship
between Segre varieties and extremal discs.

Theorem (Bertrand, D., Lamel ’20)
Let M ⊂ C2 be a connected real-analytic hypersurface, p ∈M .
Assume that there exist open neighbourhoods U, V ⊂ C2 of p such that
the Segre varieties Sq ⊂ U , q ∈ V are defined and such that Sq ∩U+ is
an extremal disc for U+ for every q ∈ V−. Then M is umbilical at
every strictly pseudoconvex point of V ∩M , and hence generically
locally spherical.
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Segre varieties and extremal discs

Remark: If M is also the (connected) boundary of a simply connected
domain, then it is in fact globally biholomorphic to a sphere:

Corollary
Let Ω ⊂ C2 be a bounded, simply connected strictly pseudoconvex
domain with connected real-analytic boundary, and assume that U is a
neighbourhood of bΩ such that Sq ∩ Ω is defined for all q ∈ U ∩ Ω

c
. If

Sq ∩ Ω is an extremal disc (for Ω) for every q ∈ U ∩ Ω
c
, then Ω is

biholomorphic to the the unit ball B.

The corollary follows from the previous theorem by applying the
results in Chern-Ji (’96). Without topological assumptions, a locally
spherical hypersurface might indeed fail to be globally CR equivalent
to the sphere, cf. Burns-Shnider (’76).
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Segre varieties and extremal discs

The assumption that M is strongly pseudoconvex is needed:

Example
Consider the ellipsoids M = {|z|2α + |w|2β = 1} ⊂ C2. The stationary
discs for such a hypersurface were computed in Jarnicki-Pflug (’95)
and coincide with the Segre varieties. Note however that M is locally
spherical where it is strongly pseudoconvex.

It is in general not enough to just have a one-parameter family of
Segre varieties which are stationary:

Example
Let M = {Imw = |z|2 + |z|8} ⊂ C2. Then the Segre varieties w = c
with Im c > 0 correspond to stationary discs.
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Normal form

Since the result is local we fix a point p ∼= 0 ∈M and choose
coordinates in which M is in Chern-Moser normal form, i.e.
M = {ρ = 0} with

ρ(z, w, z, w) = Rew− |z|2 +αz2z4 +αz4z2 + Imw h(z, z, Imw) + g(z, z)

where α ∈ C, g(z, z) = O(|z|7) and h(z, z, Imw) = O(|z|6).

In these coordinates, a subfamily of the Segre varieties can be
conveniently written as {w = c}, c ∈ C. In particular the varieties of
the form {w = t2}, t ∈ R intersect M in a closed curve.

The idea is to use the assumption that the discs {w = t2} are
stationary to conclude that α = 0, showing that p is an umbilical
point.
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Normal form

Since the result is local we fix a point p ∼= 0 ∈M and choose
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M = {ρ = 0} with
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Stationarity condition

Let Ωt = {w = t2} ∩ {ρ > 0}; the discs we are interested in are thus
the ft : ∆→ C2 defined as ft(ζ) = (Rt(ζ), t2), where Rt : ∆→ Ωt is
the Riemann map such that Rt(0) = 0, R′t(0) > 0.

The stationarity condition for ft can be written explicitly as follows:
there exists a continuous function at : b∆→ R+ and holomorphic
functions z̃t, w̃t ∈ O(∆) ∩ C(∆) satisfying{

z̃t(ζ) = ζat(ζ)∂ρ∂z (Rt(ζ), t2, Rt(ζ), t2)

w̃t(ζ) = ζat(ζ) ∂ρ∂w (Rt(ζ), t2, Rt(ζ), t2)

for all ζ ∈ b∆.

In order to obtain the desired conclusion one needs to explore the
consequences of this condition as t→ 0.
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Scaling

In order to make the method work, one needs to understand the
asymptotic behavior of the functions at, R

−1
t as t→ 0. This is rather

singular, though, since Ωt degenerate to a point at t = 0.

A suitable scaling method is thus needed to resolve the singularity at
t = 0, and turn the (suitably rescaled) domains Ωt into small
perturbations of the unit disc.

Another crucial issue is the smoothness of the functions involved with
respect to t; this is established by an appropriate choice of the
function at, as given in Pang (’93), and smoothness results for
Riemann maps depending on parameters.
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Chains as null geodesics

In the approach of Faran (’81), chains were treated within the original
framework introduced by Chern and Moser; for our problem, however,
this does not appear to lead to computations that are sufficiently
tractable.

For our purpose, it seems that a more convenient treatment is the one
provided by Fefferman (’76). In that paper, approximate solutions u
are constructed for a suitable Monge-Ampère equation defined on a
strictly pseudoconvex domain D ⊂ Cn. This solution is also an
asymptotic approximation of the Bergman kernel K(z, z) near the
boundary.

In turn, the function u is used to define a biholomorphically invariant,
conformal Lorentz metric on bD × S1. As it turns out, the projections
onto bD of null geodesics of this metric coincide with the
Chern-Moser chains.
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Chains and extremal discs

The construction in Fefferman (’76) is very concrete, and the
coefficients of the metric can be computed explicitly from a defining
function for bD.

Nevertheless, computing exact solutions of the corresponding geodesic
equation is not possible in general. Our approach is rather to study
the asymptotic behavior of the family of geodesics, as their starting
point approaches the origin (in the same normal-form coordinates
considered above).

At least in C2, an asymptotic expansion can be computed explicitly
up to the smallest order affected by the presence of non-umbilical
terms in the normal form. An analysis similar to the one employed for
Segre varieties (modulo many technical complications) can then be
carried out. The computational complexity involved is, however,
considerably larger than in the previous case.
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Chains and extremal discs

Theorem (Bertrand, D., Lamel)
Let M ⊂ C2 be a connected real-analytic hypersurface, p ∈M .
Assume that there exist open neighbourhoods U ⊂ C2 of p such that
every chain contained in U is the boundary of an extremal disc
contained in U+. Then M is umbilical at every strictly pseudoconvex
point of V ∩M , and hence generically locally spherical.

Under the same topological assumptions as in the previous case, the
local result can be globalized, yielding the sphericity of the domain
bounded by M .
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Thank you!
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