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Introduction

The study of complex geometric invariants associated to a real submanifold M ⊂ CN is
essential in order to understand the group of automorphisms of M , and in particular, in the
problem of distinguishing one automorphism from another. Poincaré initiated such a study of
invariants associated to a real hypersurface by looking at relations between the Taylor series
coefficients of a defining function and of the corresponding defining function obtained by a
local biholomorphic change of variables. This approach of finding invariants from power series
expansions was carried out much later in a significant way by Moser for Levi nondegenerate
hypersurfaces [21]. For a real submanifoldM ⊂ CN and a point p ∈M , we denote by Aut(M,p)
the set of germs of biholomorphic maps fixing p and such that F (M) ⊂ M . The following
theorem is contained in the work of Chern and Moser [21] (see also [18, 19, 53, 54]):

Theorem 0.1. If a real hypersurface M ⊂ CN is real analytic Levi nondegenerate at a point
p ∈M, then elements of Aut(M,p) are uniquely determined by their jet of order two at p.

Theorem 0.1 is false without any assumption on the Levi form, as one can see by considering
the hyperplane M = {(z, w) ∈ C2 | =mw = 0} whose automorphism group at 0 is infinite
dimensional (see e.g. [61]). Note that in C2, Levi-flat hypersurfaces are the only ones among
real analytic hypersurfaces for which local biholomorphisms are not uniquely determined by
their jet of any order [26].

Finite jet determination of holomorphic maps between real analytic real submanifolds has
attracted considerable attention these past years. For a survey on this matter, we point out for
instance to the articles of Zaitsev [61] or Baouendi, Ebenfelt and Rothschild [4]. Naturally, af-
ter Theorem 0.1, many other situations were investigated; finitely nondegenerate hypersurfaces
[1, 60]; Ebenfelt, Lamel and Zaitsev [26] proved that 2-jet determination holds for hypersurfaces
of finite type in C2 (see also [39]); finite (multi)type in CN [5, 42, 40]. We note the paper of
Juhlin [36] for holomorphically nondegenerate hypersurfaces which settles a conjecture due to
Baouendi, Ebenfelt and Rotschild [2]. Important work on finite jet determination for holomor-
phic maps between real submanifolds of higher codimension has also been done; we refer for
instance to the articles of Beloshapka [8], Zaitsev [60], Baouendi, Ebenfelt and Rotschild [2],
Baouendi, Mir and Rotschild [6], Lamel and Mir [42], Juhlin [36], Juhlin and Lamel [37], Mir
and Zaitsev [46]. Actually, in the real analytic setting one knows more; (formal) biholomor-
phisms between sufficiently nondegenerate real submanifolds can be reconstructed from their
jets in an analytic way. See for instance the survey of Lamel [41] and the article of Juhlin and
Lamel [37]).

In the smooth case, results on finite jet determination for holomorphic maps relies on the
method of complete differential systems (which goes back to the works of Cartan [18, 19] and
Chern and Moser [21], and developed further by Han [31, 32]; see also Peyron [48]) and have
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been restricted to the setting of finitely nondegenerate real submanifolds. We refer to the works
of Ebenfelt [24], Ebenfelt and Lamel [25] for C∞ real hypersurfaces and Kim and Zaitsev [38]
for C∞ real submanifolds of higher codimension.

In [9], the question of finite jet determination was studied from a more geometric perspec-
tive, using an important family of invariant objects attached to real submanifolds, namely the
stationary discs. These discs are special analytic discs, attached to a given real submanifold
M ⊂ CN , which admit a lift, with a pole of order at most one at the origin 0, to the conor-
mal bundle of M . These particular discs were introduced by Lempert in [43] in his study of
the complex geometry of bounded smooth strongly convex domains in CN . As applications,
Lempert provided a precise form and a new proof of Fefferman theorem on boundary exten-
sion of biholomorphisms (see also [44]), introduced an analogue of the Riemann map which
he used to construct solutions of Monge-Ampere type equations (see also [45]). Poletsky [49]
studied extremal discs in pseudoconvex domains using a variational approach; in particular, he
proved that the associated Euler-Lagrange equation corresponds to the stationary condition for
a holomorphic disc. The existence and construction of stationary discs were later on developed
in more general settings. In case of nonconvex bounded strictly pseudoconvex domains Pang
[47] studied the relation between extremal discs for the Kobayashi metric and stationary discs,
and obtained a smoothness result for the Kobayashi metric. We note the important work of
Huang [35] on the construction of stationary discs for bounded strictly pseudoconvex domains
and their application to the study of dynamical properties of self-maps (see also [34]). The case
of strictly pseudodonvex real submanifolds of higher codimension was treated by Tumanov [56]
who consequently obtained a regularity theorem for CR maps; see also the work of Sukhov and
Tumanov [52] who construct stationary discs attached to small perturbations of S3 × S3 ⊂ C4,
where S3 denotes the unit sphere in C2. Finally, we refer to the works of Coupet, Gaussier
and Sukhov [23], Spiro and Sukhov [51], and Gaussier and Joo [28] in the almost complex
framework.

Recently, many results on finite jet determination for finitely smooth real submanifolds were
obtained using stationary discs attached to such submanifolds [9, 11, 13, 10, 57, 14]. It is
important to point out that, to the best of our knowledge, the method of stationary discs used
in these articles is the only one which allows to treat finitely smooth real submanifolds. The
main point in the approach developed in these papers is the construction of "enough" stationary
discs with "good" geometric properties. The idea of attaching such a disc to a real submanifold
is a boundary value problem, namely a nonlinear Riemann-Hilbert type problem. In case
of a nondegenerate real subamanifold M - in which case its conormal bundle is totally real
[59, 56] - inspired by the essential works of Forstnerič [27] and of Globevnik [29, 30] on analytic
discs attached to totally real submanifolds, one can analyze the existence and the structure
of solutions of such nonlinear Riemann-Hilbert problems. In the setting of Levi degenerate
hypersurfaces, the corresponding conormal bundle admits complex tangencies, and therefore
the attachment of discs is much more complicated. This issue can be settled by allowing a
higher winding of the conormal part of the disc. In that setting, the construction and study of
these higher order stationary discs, called k0-stationary discs (see Definition 1.4) and introduced
in [11], relies on a nonlinear singular Riemann-Hilbert problem which can be treated with the
techniques developed in [12].

1. Preliminaries

We denote by ∆ the unit disc in C, by ∂∆ its boundary, and by B ⊂ CN the unit ball in CN .
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1.1. Real submanifolds of CN . Let M ⊂ CN be a C4 generic real submanifold of real codi-
mension d ≥ 1 and let p ∈ M . After a local biholomorphic change of coordinates, we may
assume that p = 0 and that M ⊂ CN = Cnz × Cdw is given locally by

(1.1)


r1 = <ew1 − tz̄A1z +O(3) = 0

...
rd = <ewd − tz̄Adz +O(3) = 0

where A1, . . . , Ad are Hermitian matrices of size n (see [3] and Section 7.2 [17] for more details).
In the remainder O(3), z is of weight one and =mw of weight two. We set r := (r1, . . . , rd).

We recall the following biholomorphic invariant notions of nondegeneracy that coincide in
the hypersurface case and in case N = 4. Let M be C4 generic real submanifold M of CN of
codimension d given by (1.1).

Definition 1.1 ([56]). The submanifold M is generating strictly pseudoconvex at 0 if the
following two conditions are satisfied

(a) A1,...,Ad are linearly independent (equivalently on R or C)

(t+) there exists a real linear combination
∑d

j=1 cjAj that is positive definite.

Definition 1.2 ([10]). The submanifold M is fully nondegenerate at 0 if the following two
conditions are satisfied

(f) there exists V ∈ Cn such that spanC{A1V, . . . , AdV } is of dimension d,

(t) there exists a real linear combination
∑d

j=1 cjAj that is invertible.

Definition 1.3 ([14]). The submanifold M is D-nondegenerate at 0 if the following two con-
ditions are satisfied

(d) there exists V ∈ Cn such that spanR{A1V, . . . , AdV } is of dimension d,

(t) there exists a real linear combination
∑d

j=1 cjAj that is invertible.

We point out that conditions (a), (f) and (d) impose a restriction on the codimension of M ;
namely (a) implies d ≤ n2, whiles (f) implies d ≤ n, and (d) implies d ≤ 2n. Note that (f)
implies (d), and that (d) implies (a). We point out that in case d = 2, conditions (f), (d) and
(a) are equivalent, but are not in general equivalent as illustrated by the following example
quadric in C8 given by 

<ew1 = |z1|2 + |z2|2 + |z3|2 + |z4|2

<ew2 = |z1|2

<ew3 = |z2|2

<ew4 = |z1|2 + <e(z1z2)

Condition (f) is tightly related to the existence of analytic discs whose centers fill an open set
and determined by their 1-jet (see Proposition 2.13). Recall that condition (t) was introduced
by Tumanov [56] and is essential for the construction of stationary discs (see Theorem 2.1).
Finally, we note that the quadric 

<ew1 = |z1|2

<ew2 = |z2|2

<ew3 = z1z2 + z1z2
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is D-nondegenerate but not fully nondegenerate; the quadric{
<ew1 = |z1|2 − |z2|2

<ew2 = |z3|2

is D-nondegenerate but not generating strictly pseudoconvex; and the quadric
<ew1 = |z1|2

<ew2 = |z2|2

<ew3 = z1z2 + z1z2

<ew4 = iz1z2 − iz1z2

is generating strictly pseudoconvex but not D-nondegenerate.

1.2. Stationary discs. We first introduce relevant spaces of functions. Let k ≥ 0 be an integer
and let 0 < α < 1. We denote by Ck,α = Ck,α(∂∆,R) the space of real-valued functions defined
on ∂∆ of class Ck,α. The space Ck,α is endowed with its usual norm

‖f‖Ck,α =

k∑
j=0

‖f (j)‖∞ + sup
ζ 6=η∈∂∆

‖f (k)(ζ)− f (k)(η)‖
|ζ − η|α

,

where ‖f (j)‖∞ = max
∂∆
‖f (j)‖. We set Ck,αC = Ck,α + iCk,α and equip this space with the norm

‖f‖Ck,αC
= ‖<ef‖Ck,α + ‖=mf‖Ck,α .

We denote by Ak,α the subspace of analytic discs in Ck,αC consisting of functions f : ∆ → C,
holomorphic on ∆ with trace on ∂∆ belonging to Ck,αC .

Let M be a C4 generic real submanifold of CN of codimension d given by (1.1). An analytic
disc f ∈ (Ak,α)N is attached to M if f(∂∆) ⊂ M . Following Lempert [43] and Tumanov [56]
we define

Definition 1.4 ([11]). Let k0 ≥ 1 be an integer. A holomorphic disc f : ∆ → CN continuous
up to ∂∆ and attached to M is k0-stationary for M if there exists a holomorphic lift f = (f, f̃)
of f to the cotangent bundle T ∗CN , continuous up to ∂∆ and such that for all ζ ∈ ∂∆, f(ζ) ∈
N k0M(ζ) where

N k0M(ζ) := {(z, w, z̃, w̃) ∈ T ∗CN | (z, w) ∈M, (z̃, w̃) ∈ ζk0N∗(z,w)M \ {0}},

and where N∗(z,w)M is the conormal fiber at (z, w) of M . The set of these lifts f = (f, f̃), with
f nonconstant, is denoted by Sk0(M).

Remark 1.5. If k0 = 1, such discs correspond to usual stationary discs introduced by Lempert
in [43]; we will drop the index 1 in all notations related to 1-stationary discs.

Note that, equivalently, an analytic disc f ∈ (Ak,α)N attached to M is stationary for M if
there exists d real valued functions c1, . . . , cd : ∂∆→ R such that

∑d
j=1 cj(ζ)∂rj(0) 6= 0 for all

ζ ∈ ∂∆ and such that the map

ζ 7→ ζk0
d∑
j=1

cj(ζ)∂rj

(
f(ζ), f(ζ)

)
defined on ∂∆ extends holomorphically on ∆.
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The set of such small discs is invariant under CR automorphisms; recall that if F is a CR
automorphism of M and f an analytic disc attached to M then the map F ◦ f defined on
∂∆ extends holomorphically to ∆ (see Proposition 6.2.2 in [3] or Theorem 1 p. 200 in [17]).
Moreover recall the following essential result due to Webster [59] in the hypersurface case and
to Tumanov [56] for higher codimension submanifolds.

Proposition 1.6 ([56]). Let M be a C4 generic real submanifold of CN of codimension d
given by (1.1). Then M satisfies (t) if and only the conormal bundle N∗M is totally real at(

0,
∑d

j=1 cj∂rj(0)
)
, where the constant c1, . . . , cd are such that

∑d
j=1 cjAj is invertible.

We end this section with an important remark on the smoothness of stationary discs. Let
k ≥ 2 be an integer and letM be a Ck+2 generic real submanifold of CN of codimension d given
by (1.1). Assume that M is satisfies (t). Consider a lift of stationary disc f = (f, f̃) for M
satisfying f(1) = (0,

∑d
j=1 cj∂rj(0)) where

∑d
j=1 cjAj is invertible. It follows from Proposition

1.6 and from Chirka (Theorem 33 in [22]) that such discs are of class Ck,α for any 0 < α < 1
near ζ = 1.

1.3. Partial indices and Maslov index. The construction of stationary discs attached to a
generic real submanifold of CN relies on a nonlinear Riemann-Hilbert problem whose study is
related to certain geometric integers, namely the partial indices and the Maslov index, associated
to the linearized problem. We recall the definition of these integers. We denote by GlN (C) the
general linear group on CN . Let G : ∂∆→ GlN (C) be a smooth map. We consider a Birkhoff
factorization (see Section 3 [29] or [58]) of −G−1G on ∂∆:

−G(ζ)
−1
G(ζ) = B+(ζ)


ζκ1 (0)

ζκ2

. . .
(0) ζκN

B−(ζ),

where ζ ∈ ∂∆, B+ : ∆̄ → GlN (C) and B− : (C ∪ ∞) \ ∆ → GlN (C) are smooth maps,
holomorphic on ∆ and C \∆ respectively. The integers κ1, . . . , κN are called the partial indices
of −G−1G and their sum κ :=

∑N
j=1 κj the Maslov index of −G−1G. Recall that the Maslov

index κ is equal to the winding number of the function

ζ 7→ det
(
−G(ζ)−1G(ζ)

)
at the origin ([30], see also Lemma B.1 [15] for a proof); here det

(
−G(ζ)−1G(ζ)

)
denotes the

determinant of −G(ζ)−1G(ζ).

2. Construction of stationary discs

The idea of attaching an analytic disc to a real submanifold is a boundary value problem,
namely a nonlinear Riemann-Hilbert type problem. Given an initial discs attached to a model
submanifold, our approach consists in studying the existence and the structure of solutions of
such Riemann-Hilbert problems by perturbing both the initial disc and the model submanifold.
This is achieved via the implicit function theorem and, in particular, a careful choice of the
Banach spaces of functions involved. In the nondegenerate settings that study is based on the
important works of Forstnerič [27] and of Globevnik [29, 30] on analytic discs attached to totally
real submanifolds. In the framework of Levi degenerate hypersurfaces, the attachment of discs
is much more complicated and relies on the study of a singular Riemann-Hilbert problem; the
article [12] provides the relevant techniques adapted to this problem.
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2.1. The case of nondegenerate real submanifolds. In this section, we discuss the con-
struction of lifts of stationary discs attached to small perturbations of a quadric submanifold,
and satisfying condition (t).

2.1.1. The model case. Consider a quadric submanifold Q ⊂ CN = Cnz ×Cdw of real codimension
d

(2.1)


ρ1 = <ew1 − tz̄A1z = 0

...
ρd = <ewd − tz̄Adz = 0

where A1, . . . , Ad are hermitian matrices of size n; we set ρ := (ρ1, . . . , ρd). By a straightforward
computation one obtains a special family of stationary discs f = (h, g, h̃, g̃) for Q of the form

(2.2) f =

(
(1− ζ)V, 2(1− ζ) tV A1V, . . . , 2(1− ζ) tV AdV, (1− ζ) tV A,

ζ

2
c

)
,

where V ∈ Cn, c1, . . . , cd ∈ R, and A :=
∑d

j=1 cjAj . We emphasize that the quadric Q is only
supposed to be of the form (2.1).

2.1.2. The Riemann-Hilbert problem. Let M = {r = 0}, with r = (r1, . . . , rd), be a generic real
submanifold of CN of codimension d given by (1.1). The fibration NQ(ζ), ζ ∈ ∂∆, can be
defined by 2n+ 2d real defining functions r̃ := (r̃1, . . . , r̃2n+2d). This allows to consider lifts of
stationary discs as solutions of a nonlinear Riemann-Hilbert type problem. Indeed, an analytic
disc f = (f, f̃) : ∆→ T ∗CN is the lift of a stationary disc for M = {r = 0} if and only if

(2.3) r̃(f) = 0 on ∂∆.

The next section is devoted to the study of this problem.

2.1.3. Construction of stationary discs. The main result is

Theorem 2.1 ([10]). Let Q = {ρ = 0} ⊂ Cn+d be a quadric submanifold of real codimension
d of the form (2.1). Assume that Q satisfies (t) and consider an initial lift of a stationary
disc, f0 = (h0, g0, h̃0, g̃0) of the form (2.2) where c1, . . . , cd are chosen such that the matrix∑d

j=1 cjAj is invertible. Then there exist open neighborhoods U of ρ in (C4(B))d and V of 0 in
R4n+4d, a real number ε > 0 and a map

F : U × V →
(
A1,α

)2n+2d

of class C1 such that:
i. F(ρ, 0) = f0,
ii. for all r ∈ U , the map

F(r, ·) : V → {f ∈ S({r = 0}) | ‖f − f0‖1,α < ε}
is one-to-one and onto.

In particular,
{f ∈ S({r = 0}) | ‖f − f0‖1,α < ε}

forms a C1 real submanifold of dimension 4n+ 4d of
(
A1,α

)2n+2d.

Note that the dimension of the above submanifold depends only on the dimension of the ambient
space and not on the codimension; this point is related with the fact that the dimension of the
conormal bundle of M does not depend on the codimension of M . Theorem 2.1 is proved in [9]
in the case of codimension d = 1.
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Remark 2.2. Working with the Banach spaces C4(B) and A1,α is crucial for our approach which
is based on the implicit function theorem. The required smoothness is indeed necessary for the
below map F (see (2.4)) to be of class C1.

Remark 2.3. In [52], Sukhov and Tumanov proved Theorem 2.1 in case the model quadric is
S3×S3 ⊂ C4, where S3 denotes the unit sphere in C2 (see Corollary 3.2 and Theorem 3.4 [52]).
Their approach also relies on the study of the corresponding Riemann-Hilbert problem using
the methods developed by [27, 29, 30].

Remark 2.4. In the context of generating strictly pseudoconvex submanifolds, the analogous of
Theorem 2.1 was proved by Tumanov [56], based on a rather different approach, namely the
Bishop equation (see Theorem 5.1 [56]); it is important for his approach that the submanifold
is generating strictly pseudoconvex submanifolds, that is, satsifies (a) and (t+). We emphasize
that Theorem 2.1 only requires the model to satisfy (t); in particular, note that there is no
codimension restriction in Theorem 2.1.

Proof of Theorem 2.1. The proof of Theorem 2.1 relies on the implicit function theorem and is
inspired by the works of Forstnerič [27] and of Globevnik [29, 30]. In a neighborhood of (ρ,f0)

in (C4(B))d ×
(
A1,α

)2n+2d, Consider the following map between Banach spaces

F : (C4(B))d ×
(
A1,α

)2n+2d → (C1,α)2n+2d

by

(2.4) F (r,f) := r̃(f).

Here we use the notation
r̃(f)(ζ) = r̃(ζ)(f(ζ)), ζ ∈ ∂∆.

The map F is of class C1 (see Lemma 5.1 in [33] and Lemma 6.1 and Lemma 11.2 in [29] which
generalizes to C1,α). Recall that an analytic disc f ∈

(
A1,α

)2n+2d is the lift of a stationary
disc for {r = 0} if and only if it solves the nonlinear Riemann-Hilbert problem (2.3). In other
words, for any fixed r ∈ (C4(B))d, the zero set of F (r, ·) coincides with S({r = 0}). We wish to
apply the implicit function theorem to the map F . We need to consider the partial derivative
of F with respect to

(
A1,α

)2n+2d at (ρ,f0), namely

∂2F (ρ,f0)f = 2<e
[
G(ζ)f

]
where G(ζ) is the following complex valued square matrix of size 2n+ 2d

(2.5) G(ζ) :=
(
ρ̃z(f0), ρ̃w(f0), ρ̃z̃(f0), ρ̃w̃(f0)

)
.

Recall that condition (t) is equivalent to the fact that the conormal bundle is totally real (see
Proposition 1.6). Due to the choice of the initial disc, this ensures that the matrix G(ζ) is
invertible for all ζ ∈ ∂∆; this point is proven below. We need to show that (see p. 39 [30])
i. the map ∂2F (ρ,f0) is onto, and
ii. the real dimension of the kernel of ∂2F (ρ,f0) is 4n+ 4d.
Surjectivity of ∂2F (ρ, f0). It is more convenient to reorder coordinates and consider (w, z, z̃, w̃)

instead of (z, w, z̃, w̃). Accordingly, discs f are of the form (g, h, h̃, g̃). We still denote by G(ζ)
the corresponding reordered matrix, namely

G(ζ) :=
(
ρ̃w(f0), ρ̃z(f0), ρ̃z̃(f0), ρ̃w̃(f0)

)
.
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The matrix G(ζ) is square of size 2n + 2d, upper block triangular and a direct computation
gives

G(ζ) =

 1
2Id (∗)

G2(ζ)
(0) −iζId

 ,

where Id denotes the identity matrix of size d and G2(ζ) is the following square matrix of size
2n

G2 =



2
∑d

j=1 g̃j(Aj)11 . . . 2
∑d

j=1 g̃j(Aj)n1 1 0
...

...
...

. . .
2
∑d

j=1 g̃j(Aj)1n . . . 2
∑d

j=1 g̃j(Aj)nn 0 1

2i
∑d

j=1 g̃j(Aj)11 . . . 2i
∑d

j=1 g̃j(Aj)n1 −i 0
...

...
...

. . .
2i
∑d

j=1 g̃j(Aj)1n . . . 2
∑d

j=1 g̃j(Aj)nn 0 −i


.

where g̃j = cj/2ζ and (Aj)kl, k = 1, . . . , n, l = 1, . . . , n, denotes the kl coefficient of Aj . Recall
that c1, . . . , cd ∈ R are chosen such that A :=

∑d
j=1 cjAj is invertible. It follows that

G2(ζ) =

(
ζ tA In
iζ tA −iIn

)
is invertible on ∂∆, and that, accordingly, so is G(ζ). Due to the expression of G(ζ), in order
to show its surjectivity, it is enough to show that the map

L1 :
(
A1,α

)2n → (C1,α)2n

defined by L1 = 2<e
[
G2(ζ) ·

]
is surjective. For this purpose, we will show that the partial

indices k1, . . . , k2n of −G−1
2 G2 are nonnegative (see [29] or Section 4 in [30]). Right multipli-

cation by the constant matrix
(

tA−1 0
0 In

)
does not change the partial indices, and gives us

the matrix (
ζIn In
iζIn −iIn

)
After permuting rows and columns, which also does not change the partial indices, we obtain

G[2 =

R 0
. . .

0 R

 , with R(ζ) =

(
ζ 1
iζ −i

)
.

By a direct computation we have

−(G[2)−1G[2 =

P 0
. . .

0 P

 with P (ζ) = −
(

0 ζ
ζ 0

)
,

which, for instance, decomposes as

P (ζ) =

(
0 −1
−1 0

)(
ζ 0
0 ζ

)(
1 0
0 1

)
.

It follows that the partial indices of −(G[2)−1G[2 are all equal to one and that, therefore, the
map ∂2F (ρ,f0) is onto.
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Kernel of ∂2F (ρ, f0). Recall (see [29] or Section 5 in [30]) that the real dimension of the kernel
of ∂2F (ρ,f0) is given by κ+ 2n+ 2d, where κ is the Maslov index of −G(ζ)−1G(ζ) and is equal
to the winding number of the function ζ 7→ det

(
−G(ζ)−1G(ζ)

)
at the origin. Using the form

of G(ζ) and in particular G2(ζ), a direct computation shows that κ = 2n+ 2d.
�

2.2. The case of degenerate real hypersurfaces. In this section, we discuss the construc-
tion of stationary discs attached to Levi degenerate real hypersurfaces of Cn+1 = Cnz × Cw.
However, in this context, it is not clear whether or not one can ensure the existence of smooth
stationary discs, and not much seems to be known in that direction. Note that in such case
the corresponding conormal bundle is no longer totally real and the method described in Sec-
tion 2.1.3 falls apart. Recall that stationary discs are holomorphic discs attached to a given
hypersurface, admitting a meromorphic lift to the cotangent bundle with at most one pole of
order one at the origin and attached to the conormal bundle; surprisingly, when one allows the
pole to be of greater order, there might exist many such discs, which still form a biholomorphi-
cally invariant family. This point led to the introduction in [11] of the notion of k0-stationary
discs (see Definition 1.4). A first observation is that one can attach to any polynomial rigid
model hypersurface {−<ew + P (z, z) = 0} many k0-stationary discs; with k0 carefully chosen,
depending on the highest power of z in the polynomial P (z, z). The important question is to
construct k0-stationary discs by perturbing both a model hypersurface and an initial disc in a
similar manner as in Section 2.1.3; unfortunately not any model hypersurface will work for our
approach. The next section is devoted to understand which model hypersurface to consider.

2.2.1. Admissible hypersurfaces. A polynomial P : Cn → R is weighted homogeneous of weight
M = (m1, · · · ,mn) ∈ Nn and degree d ∈ N if for any t ∈ R and z ∈ Cn we have

P (tm1z1, · · · , tmnzn, tm1 z̄1, · · · , tmn z̄n) = tdP (z, z̄).

Using the notation tMz = (tm1z1, · · · , tmnzn), the condition can be written as P (tMz, tM z̄) =
tdP (z, z̄). For our approach it is more convenient to assume that m1, · · · ,mn are all even; this
is not a problem since the size of the weights (m1, . . . ,mn) is often not important. Consider
a real-valued, weighted homogeneous of weight M = (m1, · · · ,mn) polynomial P of degree d.
We write

(2.6) P (z, z̄) =
∑

M ·J+M ·K=d
d−k0≤M ·J≤k0

αJKz
JzK

where k0 is the largest k with
d

2
≤ k ≤ d − 1 for which there exists two multi-indices J̃ , K̃

with M · K̃ = k satisfying αJ̃K̃ 6= 0. Here, for two multi-indices M = (m1, · · · ,mn) and
J = (j1, · · · , jn), we set M · J =

∑n
i=1miji. Moreover, since P is real, αJK = αKJ for all

multi-indices J,K. We define the model hypersurface SP = {ρ = 0} ⊂ Cn+1 where

(2.7) ρ(z, w) = −<ew + P (z, z).

Define for v = (v1, · · · , vn) ∈ Cn the analytic disc hv : ∆→ Cn

hv(ζ) = (1− ζ)Mv = ((1− ζ)m1v1, (1− ζ)m2v2, . . . , (1− ζ)mnvn).
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We will need to control the Levi form of SP along the boundary of hv,

Pzz(h
v(ζ), hv(ζ)) =

Pz1z1(hv(ζ), hv(ζ)) · · · Pz1zn(hv(ζ), hv(ζ))
...

. . .
...

Pznz1(hv(ζ), hv(ζ)) · · · Pznzn(hv(ζ), hv(ζ))

 .

For ζ ∈ ∂∆ we can write
ζk0Pzizj (h

v(ζ), hv(ζ)) = (1− ζ)d−mi−mjQv
ij

(ζ)

ζk0Pzizj (h
v(ζ), hv(ζ)) = (1− ζ)d−mi−mjSvij(ζ)

where Qv
ij
and Svij are holomorphic polynomials, and where each Qv

ij
has degree at most 2k0 −

d + mj and each Svij has degree at most 2k0 − d. Our assumption is now that not only does
hv only pass through Levi nondegenerate points for ζ 6= 1, but also, that the Levi form of SP
along hv has the generic order of vanishing at 1 (so that the order of vanishing of the Levi form
stays constant under small perturbations of both P and v). More precisely

Definition 2.5 ([13]). We say that v is admissible for P if there exists an analytic disc gv :
∆→ C such that for fv = (hv, gv) we have that fv(∂∆) ⊂ SP , fv(∆) 6⊂ SP , and for ζ ∈ ∂∆

Qv(ζ) = det

Q11(ζ) . . . Q1n(ζ)
...

. . .
...

Qn1(ζ) . . . Qnn(ζ)

 6= 0.

Remark 2.6. Note that under generic conditions, we do find admissible vectors. Indeed if SP
is generically Levi nondegenerate and if the set of Levi-degenerate points ΣP = {(z, w) ∈
SP : detPziz̄j (z, z̄) = 0} does not have any branches of dimension 2n− 1 near 0, then one can
prove that there exists an admissible vector v for P .

Finally, we define

Definition 2.7 ([13]). A model hypersurface SP = {ρ = 0} ⊂ Cn+1 with ρ given by (2.7) is
admissible if P has an admissible vector.

Remark 2.8. In complex dimension two, a model hypersurface {−<ew+P (z, z) = 0} is admis-
sible if the zero locus of the laplacian of the homogeneous polynomial P is trivial, namely

{z ∈ C | Pzz(z, z) = 0} = {0}.

Example 2.9. For t ≥ 0, the model {−<ew + |z|4 + t<e(z3z)} is admissible if and only if
0 ≤ t < 2

3 . The model {−<ew + <e(z3z)} is not admissible.

2.2.2. Construction of stationary discs. In order to construct stationary discs by perturbing
both an admissible model hypersurface and an initial disc it is important to focus on discs
passing through the degeneracy locus of SP . Indeed, one cannot expect the family of lifts
of stationary discs passing through the degeneracy locus of SP or avoiding it (for which the
method developed in Section 2.1.3 is well adapted) to be of the same dimension. To this end
we introduce spaces of discs with prescribed pointwise constraints. Let k ≥ 0 be an integer and
let 0 < α < 1. For a positive integer m, we denote by Ak,α0m the subspace of Ck,αC of functions of
the form (1− ζ)mf , with f ∈ Ak,α. We equip Ak,α0m with the norm

(2.8) ‖(1− ζ)mf‖A1,α
0m

= ‖f‖Ck,αC
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which makes it a Banach space, isomorphic to Ak,α. We also denote by Ck,α0m the subspace of
Ck,α of functions of the form (1 − ζ)mv with v ∈ Ck,αC . The space Ck,α0m is equipped with the
norm

‖(1− ζ)mf‖Ck,α0m
= ‖f‖Ck,αC

and is also a Banach space.

Consider now an admissible model hypersurface SP = {ρ = 0} ⊂ Cn+1 with ρ given by
(2.7); that is, with P of the form (2.6) with weight M = (m1, · · · ,mn) and degree d. Let
v = (v1, · · · , vn) be an admissible vector for P and let f0 be an initial k0-stationary disc
attached to SP of the form

f0 = (hv, g0) = ((1− ζ)m1v1, . . . , (1− ζ)mnvn), g0)

where g0 is determined by <eg0 = P (hv, hv) on ∂∆, with lift

f0 = (hv, g0, h̃0, g̃0) = (hv, g0, ζk0Pz(h
v, hv),−ζk0/2).

We introduce the product space

YM,d :=
n∏
i=1

(
Ak,α0mi

)
×Ak,α0 ×

n∏
i=1

(
Ak,α

0d−mi

)
×Ak,α

endowed with the product norm (2.8). We denote by Sk0,r the set of lifts f ∈ YM,d of k0-
stationary discs for a given real hypersurface S = {r = 0}; note that f0 ∈ Sk0,ρ. The main
theorem regarding the construction of k0-stationary discs is

Theorem 2.10 ([13]). Under the above assumptions, there exist an integer N , open neigh-
borhoods U of ρ in X (see the remark below) and V of 0 in RN , a real number ε > 0 and a
map

F : U × V → YM,d

of class C1 such that:
i. F(ρ, 0) = f0,
ii. for all r ∈ U the map

F(r, ·) : V → {f ∈ Sk0,r | ‖f − f0‖YM,d < ε}
is one-to-one and onto.

Remark 2.11. The Banach space X should be thought as the set of allowable perturbation M
of SP . Its definition and specially its norm is rather technical. More importantly, being an
allowable perturbation is an independent condition with respect to smooth (enough) CR diffeo-
morphisms whose linear parts preserve weights. Hence the definition of allowable deformation
actually gives rise to a well-defined class of real hypersurfaces, independent of the coordinates
used. Details can be found in [13]. For instance, in complex dimension two, we consider small
perturbations of {−<ew + P (z, z) = 0}, where P is homogeneous of degree d, of the form

{−<ew + P (z, z) +O
(
|z|d+1

)
+ =mw O

(
|z, Imw|d−1

)
= 0}.

The proof of Theorem 2.10 is also based on the implicit function theorem and follows the
strategy of the proof of Theorem 2.1. However, in the present case, the conormal bundle is no
longer totally real and thus, the corresponding Riemann-Hilbert problem is singular. Indeed,
the initial stationary disc f0 passes through the degeneracy locus of the initial model SP at
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ζ = 1. It follows that the matrix map ζ 7→ G(ζ) (see (2.5)) is no longer invertible-valued;
more precisely, G(ζ) is invertible for all ζ ∈ ∂∆ \ {1} but G(1) is not invertible. Our approach
is, roughly speaking, to “factorize the non-singular part” G̃ of G and to study a non-singluar
Riemann-Hilbert problem – with G̃ in place of G – which is, however, defined between different
spaces. In such case, standard techniques developed in [27, 29, 30] cannot be applied directly
and versions of Riemann-Hilbert problems with pointwise constraints are needed. To the best
of our knowledge, relevant results are not covered in the vast literature on Riemann-Hilbert
problems. The paper [12] provides the tools, such as index formulas (see Theorem 2.1 and
Theorem 2.4 [12]) required for the construction of stationary discs with pointwise constraints.

Remark 2.12. In complex dimension two, Theorem 2.10 was proved in [11] with a rather different
approach, based on functional analysis and involves Toeplitz, Hankel and Fredholm operators.
As opposed to figuring out which holomorphic discs are attached to a given real submanifold
(Riemann-Hilbert problem), the paper [11] deals with circles on a given real submanifold which
extends holomorphically to the unit disc. The properties of the associated Fredholm indices
such as their invariance under homotopy, ensure the existence of nearby small k0-stationary
discs attached to perturbed hypersuface, and the number of real variables parametrizing the
perturbed discs is completely determined by those indices. The approach used in [11] does not
seem to be well suited for higher dimension and, in fact, the method based on the study of
a singular Riemann-Hilbert problem developed later on in [13] is also much more satisfactory
from a geometric viewpoint.

2.3. Geometric properties of stationary discs. It is important for applications to map-
ping problems to study geometric properties of the manifold of stationary discs constructed in
Theorem 2.1 and Theorem 2.10.

We notice first that since this manifold is of finite dimension, such discs are determined by
a finite jet at ζ = 1, in the sense that there is a positive integer k such that the jet map jk

f 7→ jk(f) =

(
f(1),

∂f

∂ζ
(1), . . . ,

∂(k)f

∂(k)ζ
(1)

)

is injective (see Lemma 5.3 [13] or the Appendix in [14]). Naturally, one seeks the smallest
such integer k and in order to achieve it, it is important to restrict the jet map to a smaller
family of discs. It is also important to establish some filling properties of such discs. In the
context of the papers [9, 11, 13, 10], centers of stationary discs fill an open set. This is achieved
by showing that the map f 7→ f(0) restricted to a smaller family of discs is a diffeomorphism
onto its image; for dimensional reasons, it is also essential to impose pointwise constraints on
stationary discs. For instance, in case of a fully nondegenerate real submanifold

Proposition 2.13 ([10]). Let Q ⊂ Cn+d be a quadric submanifold of real codimension d given
by (2.1), fully nondegenerate at 0. Consider an initial disc f0 of the form (2.2) where V is
given by (f) and c = (c1, . . . , cd) is such that the matrix

∑d
j=1 cjAj is invertible. Then there

exist an open neighborhood U of ρ in (C4(B))d and ε > 0 such that for all r ∈ U :
i. The map j1 is injective on the 2n+ 2d submanifold {f ∈ S0({r = 0}) | ‖f − f0‖A1,α

0
< ε}.

ii. The set {f(0) | f ∈ S0({r = 0}), ‖f − f0‖A1,α
0

< ε} contains an open set O of Cn+d.

Moreover, for any q ∈ O there exists an unique lift of stationary disc f = (f, f̃) such that
f(0) = q.
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Remark 2.14. The set S0({r = 0}) corresponds to lifts of stationary discs tied to the origin.
More precisely, we define the affine space A to be the subset of (A1,α)N of discs of the form(

(1− ζ)h, (1− ζ)g, (1− ζ)h̃, (1− ζ)g̃ +
ζ

2
c

)
,

and we set

S0({r = 0}) := S({r = 0}) ∩ A.

Notice that f0 ∈ S0({r = 0}). Recall also that the norm on A1,α
0 has been defined in (2.8).

In [9], Proposition 2.13 is obtained for small deformations of a given Levi nondegenerate
hyperquadric; it is important for that approach to have an explicit description of all stationary
discs attached to the model hypersurface. However, in the higher codimensional setting, it is
unclear at the moment how to obtain an explicit description of all stationary discs attached to
the model quadric in general, and therefore, it is more subtle to prove that lifts of stationary
discs are determined by their 1-jet at 1 and that the center of stationary discs fill an open set.
We emphasize that the full nondegeneracy condition is natural in the context of Proposition
2.13 since part ii. is proved by showing that the evaluation map f 7→ f(0) from Tf0S0(Q) to
CN is injective; in case Q satisfies (t), this occurs if and only if Q is fully nondegenerate.

In the framework of the recent papers [57, 14], it seems rather unclear how to prove that
centers of stationary discs fill an open set. Instead authors focus on boundaries of discs filling
an open set in either the submanifoldM (consequence of Proposition 2.2 in [50]) or its conormal
bundle N∗M (see Proposition 3.4 in [14]). Surprisingly, authors have independently noticed
that such filling property was tightly connected to the notion of defect of a stationary disc.
This notion, which we recall now, was introduced by Tumanov [55], and Baouendi, Rothschild
and Trépreau [7]. Following [7], we say that a stationary disc f is defective if it admits a lift
f = (f, f̃) : ∆ → T ∗CN such that 1/ζ.f = (f, f̃/ζ) is holomorphic on ∆. The disc is called
nondefective if it is not defective. In the model case (2.1), a stationary disc f for Q is defective if
there exists c = (c1, . . . , cd) ∈ Rd \ {0} such that the map ζ 7→ c∂zρ(f(ζ)) =

∑d
j=1 cj∂zρj(f(ζ))

defined on ∂∆ extends holomorphically on ∆; this relates with Tumanov’s equivalent definition
of the defect in [55]. A key observation in [14] is that condition (d) in Definition 1.3 is in fact
equivalent to the existence of a nondefective stationary disc with lift of the form (2.2). The
authors then show that, in that context, part i. of Proposition 2.13 on the injectivity of the
map j1 remains true whenever the initial disc f0 projects to a nondefective stationary disc; the
filling property on the conormal bundle then follows from the injectivity of the map j1. The
paper [14] shows the clear limitations of the family of lifts of stationary discs of the form (2.2);
roughly speaking, results in [14] are the strongest one can obtain in higher codimension if one
wants to work exclusively with the family (2.2). Actually, this provides also a guideline to treat
more general submanifolds (satisfying (t)); one needs to find more general explicit stationary
discs in the model case and find one nondefective disc among that family. We emphasize
that, incidentally, earlier papers [11, 13, 10] also rely on this special family of discs (2.2). In
the setting of generating strictly pseudoconvex submanifolds, Tumanov [56] gave an explicit
description of the entire family of all stationary discs attached to a model quadric. Tumanov
has long conjectured the existence of a nondefective stationary disc among that family; and he
was able to settle the conjecture, which relies essentially on linear algebra, very recently in [57].
Geometric properties of discs for generating strictly pseudconvex submanifolds such as their
1-jet determination and their filling property were in fact obtained in [56, 50].
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3. Jet determination of CR automorphisms

Stationary discs are particularly adapted to mapping problems, and in particular to jet
determination problems of CR automorphisms. This approach was pioneered in [9] in case of
Levi nondegenerate hypersurfaces of class C4 and consequently developed for more general real
submanifolds in a series of papers [11, 13, 10, 57, 14]. Not only the use of such invariants
provides a new geometric insight on jet determination problems, it is the only approach in the
literature which allows for the consideration of finitely smooth real submanifolds.

Let M ⊂ CN be a finitely smooth generic real submanifold and let p ∈ M . For a positive
integer k, we denote by Autk(M,p) the set of germs at p of CR automorphisms F of M of class
Ck; in particular F (p) = p and F (M) ⊂M . The main results are

Theorem 3.1 ([14]). Let M ⊂ CN be a C4 generic real submanifold. Assume that M is D-
nondegenerate at p ∈ M . Then elements of Aut3(M,p) are uniquely determined by their 2-jet
at p.

Theorem 3.2 ([57]). Let M ⊂ CN be a C4 generic real submanifold. Assume that M is gen-
erating strictly pseudoconvex at p ∈M . Then elements of Aut3(M,p) are uniquely determined
by their 2-jet at p.

Theorem 3.3 ([13]). Let SP = {ρ = 0} ⊂ Cn+1 be an admissible model hypersurface with ρ
given by (2.7). Then for any allowable perturbation M of SP (see Remark 2.11) near 0 ∈ SP ,
there exists an integer ` such that elements of Aut`(M, 0) are uniquely determined by their `-jet
at 0.

Remark 3.4. Assume that a jet determination result of order k′ holds in the formal setting, in
the sense that every `-jet of a formal biholomorphisms which preserves a formal hypersurface
(up to the order `) and is trivial up to order k′ necessarily coincides with the `-jet of the
identity map. Then the conclusion of Theorem 3.3 holds for k′-jet determination as long as
M is smooth enough. It follows for instance that, for the version of Theorem 3.3 in C2 (see
Theorem 1.2 in [11]), one can always achieve 2-jet determination of CR diffeomorphisms as
in the real analytic case (see [26, 39]). In higher dimension one can achieve the order of jet
determination established in the formal setting, see for instance [37, 42] and for the model case
[40].

Theorem 3.1 (and Theorem 3.2) were first proved in the hypersurface case in [9] and for fully
nondegenerate submanifolds in [10]; Theorem 3.3 was first proved in complex dimension two in
[11]. Theorem 3.2 is the strongest result to date for strictly pseudoconvex submanifolds, that is,
satisfying (t+), in higher codimension; on the other hand, the strict pseudoconvexity condition
is quite restrictive. Although the D-nondegeneracy condition imposes a strong restriction on
the codimension (d ≤ 2n), Theorem 3.1 is, up to now, the strongest result for submanifolds
satisfying (t) in higher codimension. The assumption made on the hypersurface in Theorem
3.3 is relatively technical and still too restrictive; for instance, Theorem 3.3 does not apply to
(finitely smooth) perturbations of {−<ew + |z|4 + <e(z3z) = 0} ⊂ C2; and the stationary disc
method does not allow yet to treat such hypersurfaces.

The proofs of Theorem 3.1, Theorem 3.2, Theorem 3.3 and their analogue [9, 10, 11] are
similar and relies only on the construction of stationary discs and their geometric properties
mentioned in Section 2.3. We prove Theorem 3.1 whenM is assumed to be fully nondegenerate.
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Proof of Theorem 3.1. Let M ⊂ CN be a C4 generic real submanifold, fully nondegenerate at
p ∈ M . We assume that p = 0 and that M is locally given by {r = 0} (1.1). We denote by Q
the associated quadric part of M defined by {ρ = 0} (2.1). Let F ∈ Aut3(M, 0) with a trivial
2-jet at 0. We wish to show that F is the identity.

SinceM satisfies (f) at 0, there exists V ∈ Cn such that spanC{A1V, . . . , AdV } is of dimension
d. Consider an initial lift of stationary disc f0 of the form

f0 =

(
(1− ζ)V, 2(1− ζ) tV A1V, . . . , 2(1− ζ) tV AdV, (1− ζ) tV A,

ζ

2
c

)
where c1, . . . , cd are chosen such that

∑d
j=1 cjAj is invertible. Consider now the dilation Λt :

Cn+d → Cn+d defined by
Λt(z, w) := (tz, t2w).

We set rt := 1
t2
r ◦ Λt and Ft := Λ−1

t ◦ F ◦ Λt. We also recall that for an analytic disc f =

(f, f̃) ∈
(
A1,α

)2n+2d where 0 < α < 1, we have

(Ft)∗f(ζ) =
(
Ft ◦ f(ζ), f̃(ζ)(df(ζ)Ft)

−1
)

for ζ ∈ ∆, and Ft ◦ f(ζ) is well defined thanks to Proposition 6.2.2 [3].
Denote by U the neighborhood of ρ obtained in Proposition 2.13. For t small enough, one

can show that the defining function rt =
1

t2
r ◦ Λt ∈ U . Proposition 2.13 also provides an open

set O ⊂ Cn+d such that

O ⊂ {f(0) | f ∈ S0({rt = 0}), ‖f − f0‖A1,α
0

< ε/2}.

We will show that Ft is equal to the identity on the open set O. Let q ∈ O and let f be
the unique lift of stationary disc in S0({rt = 0}) with ‖f − f0‖A1,α

0
< ε/2 and such that

f(0) = q. By invariance and since Ft has a trivial 2-jet, we have (Ft)∗f ∈ S0({rt = 0}) and
a technical computation shows that ‖(Ft)∗f − f0‖A1,α

0
< ε for t small enough. Moreover, the

discs (Ft)∗f and f have the same 1-jet. By Proposition 2.13 we have (Ft)∗f = f and therefore
Ft ◦ f(0) = f(0), that is Ft(q) = q. This proves Theorem 3.1. �
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