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Abstract. We show that if the Segre varieties of a strictly pseudocon-
vex hypersurface in C2 are extremal discs for the Kobayashi metric, then
that hypersurface has to be locally spherical. In particular, this gives yet
another characterization of the unit sphere in terms of two important
invariant families of objects coinciding.

1. Introduction

There is a deep link between complex analysis in a smoothly bounded
domain Ω ⊂ CN and the biholomorphically invariant (or short, CR) ge-
ometry of its boundary bΩ. This link is known for strictly pseudoconvex
smoothly bounded domains, where the relationship between one of the most
important analytical objects associated to the domain, its Bergman Ker-
nel function K(z, z̃), and the CR invariants of its boundary (computable
through the Chern-Moser normal form) have been well investigated: The
asymptotic expansion of the Bergman kernel can be recovered from bound-
ary invariants (and vice versa), a line of research instigated by Fefferman’s
work on the biholomorphically invariant geometry of strictly pseudoconvex
boundaries, for which we refer the reader to [1] and also to Hirachi’s work
[10].

In this paper, we will mostly deal with strictly pseudoconvex domains
Ω ⊂ C2, whose boundary bΩ =: M we also assume to be real-analytic. In
that case, there are two important families of boundary invariants: First,
the Chern-Moser normal form which gives rise to chains, i.e. families of
biholomorphically invariant curves in M intrinsically defined (we recall the
basics of this in subsection 2.1); and the Segre families of invariant complex
curves defined near M . It is a theorem of Faran [9] that if the intersections
of the Segre family with M and the chains agree, then M is locally biholo-
morphically equivalent to the unit sphere (Faran’s result is valid in higher
dimensions as well, but we will concentrate on C2 in this paper).
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There is yet another important family of invariant curves in a strictly
pseudoconvex domain C2 which are associated to the Kobayashi pseudo-
metric,

kΩ(z, v) := inf
{
a > 0: f ∈ H(∆,Ω), f(0) = z, af ′(0) = v

}
,

where ∆ denotes the unit disc in C. The corresponding integrated pseu-
dodistance, the Kobayashi pseudodistance, gives us, for settings in which it
actually is a distance, a biholomorphically invariant distance notion, and
with it, a natural hyperbolic geometry. A holomorphic disc f : ∆→ Ω with
f(0) = z is said to be extremal for (z, v) ∈ Ω × TzΩ if f ′(0)kΩ(z, v) = v;
extremal discs are natural biholomorphic invariants of a bounded domain
just like the chains and Segre families discussed above. In the setting of the
Kobayashi metric, things are a bit subtle: Even though extremal discs are
proper and geodesics for the Kobayashi distance in strictly convex domains
by the work of Lempert [16], the hyperbolic geometry of strictly pseudocon-
vex domains is more complicated; in particular, a general extremal disc may
fail to be proper. However, work of Huang [11, 12] shows that for z suffi-
ciently close to p ∈ bΩ and for v sufficiently close to the complex tangent
space T cp bΩ, extremal discs are again proper and complex geodesics. We will
consider such extremals as yet another biholomorphically invariant family.

The relationship of the geometry of the boundary with the biholomorphi-
cally invariant hyperbolic geometry has been studied less, and in particular,
the question answered by Faran about the Segre family and chains is open
when asked about the Segre family and extremal discs. Our purpose in this
paper is to settle this question (in C2). In order to state our theorem, let
us write for a neighbourhood U of a point p ∈ M , where M is a strictly
pseudoconvex real hypersurface, the decomposition U = U+∪ (U ∩M)∪U−
where U+ lies on the pseudoconvex side of M .

Theorem 1.1. Let M ⊂ C2 be a connected real-analytic hypersurface, p ∈
M . Assume that there exist open neighbourhoods U, V ⊂ C2 of p such that
the Segre varieties Sq ⊂ U , q ∈ V− are defined and such that Sq ∩ U+ is an
extremal disc for U+ for every q ∈ V−. Then M is umbilical at every strictly
pseudoconvex point of V ∩M , and hence generically locally spherical.

In particular, we also have the following characterization of the unit ball:

Corollary 1.2. Let Ω ⊂ C2 be a bounded, simply connected strictly pseudo-
convex domain with connected real-analytic boundary, and assume that U is
a neighbourhood of bΩ such that Sq∩Ω is defined for all q ∈ U∩Ω̄c. If Sq∩Ω
is an extremal disc (for Ω) for every q ∈ U ∩ Ω̄c, then Ω is biholomorphic to
the the unit ball B.

We point out that the strict pseudoconvexity of the domain is crucial as
can be seen by considering the domain Ω = {|z|2 + |w|4 < 1} ⊂ C2, where

it can been shown using [13] that any Segre variety Sq ∩ Ω for q ∈ Ω
c

near
bΩ is an extremal disc. Finally, we note that the local version Theorem 1.1
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is really stronger than Corollary 1.2, which follows from Theorem 1.1 after
applying [8, Theorem C]. Indeed, one does not expect a locally spherical
hypersurface to be globally CR equivalent to the sphere, by examples due
to Burns and Shnider [4]; for these, by the localization theorem of Huang
[12], (small) stationary discs are exactly the intersections of (small) Segre
varieties with the hypersurface.

Acknowledgment. The authors would like to thank Ilya Kossovskiy for
his interest in this work and the inspiring discussions arising from it. We
also thank an anonymous referee and the editor for remarks and comments
which helped us to improve the paper.
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2. Preliminaries

In this section, we recall some preliminaries which are needed later in the
proof.

2.1. The Chern-Moser normal form. Here we introduce the basics of
the Chern-Moser normal form for real-analytic (or formal) hypersurfaces
in C2 which we need for our main argument; the normal form was intro-
duced and its relation with the equivalence problem studied in [7]. Re-
call that a germ of a real-analytic hypersurface (M,p) ⊂ (C2, p) is defined
by the vanishing locus of a germ of a real-valued real analytic function
%(z̃, ¯̃z, w̃, ¯̃w) ∈ C {z̃, ¯̃z, w̃, ¯̃w}. Strict pseudoconvexity of M at p means that
the bordered complex Hessian of % satisfies∣∣∣∣∣∣

0 %z̃(p) %w̃(p)
%¯̃z(p) %z̃ ¯̃z(p) %w̃ ¯̃z(p)
% ¯̃w(p) %z̃ ¯̃w(p) %w̃ ¯̃w(p)

∣∣∣∣∣∣ 6= 0.

The model hypersurface for strictly pseudoconvex hypersurfaces in C2 is
the Heisenberg hypersurface H : Rew = |z|2. The automorphisms of the
Heisenberg hypersurface are given by linear fractional maps of the form

(z, w) 7→
(
λ

z + aw

1 + 2āz + (|a|2 + it)w
, |λ|2 w

1 + 2āz + (|a|2 + it)w

)
,

for (λ, a, t) ∈ C∗ × C× R.
If H(z, w) = (f(z, w), g(z, w)) is a linear fractional map of this form, H

can be determined from fz(0), fw(0), and Im gww(0). Thus, the jet map
j2
0 : Aut(H, 0)→ G2

0(C2), H 7→ j2
0H, is an injective homeomorphism onto its

image Γ. The group Aut(H, 0) is of maximal dimension amongst all auto-
morphism groups of strictly pseudoconvex hypersurfaces in C2 and therefore
gives the natural space for parameters of a normal form for the family of
strictly pseudoconvex hypersurfaces under the action of the group of local
biholomorphisms.

The Chern-Moser normal form gives, for any choice of a parameter γ ∈ Γ,
a change of coordinates (z̃, w̃) = Hp

M (z, w, γ) = (f(z, w, γ), g(z, w, γ)), which
is uniquely determined under the following conditions:

• in the new coordinates (z, w), p is the origin (i.e. Hp
M (0, γ) = p);

• the defining equation of M in the new coordinates has the form

Rew = ϕ(z, z̄, Imw) =
∑
j,k

ϕj,k(Imw)zj z̄k,

where ϕ satisfies the normalization conditions

ϕj,0(t) = 0, j ≥ 0,

ϕ1,1(t) = 1,

ϕj,1(t) = 0, j ≥ 2,

ϕ2,2(t) = ϕ2,3(t) = ϕ3,3(t) = 0.
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One can in addition require that j2
0H

p
M (·, γ) = γ · j2

0H
p
M (·, id). The chains

through p are the (parametrized) curves given by t 7→ Hp
M (0, t, γ).

The term ϕj,k(t)z
j z̄k is said to be of type (j, k). The lowest order (non-

trivial) invariant terms in the normal form are therefore the terms of type
(4, 2) (and (2, 4)), ϕ4,2 and ϕ2,4 respectively; they correspond to Cartan’s
cubic tensor from [5, 6]. The condition that ϕ2,4(0) = ϕ4,2(0) = 0 is invari-
ant under different choices of γ, and if it is satisfied for one (and hence, all)
γ ∈ Γ we say that the point p is umbilic.

Umbilicity is quite different in higher dimensions, which is why we con-
centrate on the two-dimensional case here. Umbilicity at a point means
that the order of approximation of a given strictly pseudoconvex with the
model hypersurface is higher than generically expected, and the model hy-
persurface is the only one which is everywhere umbilical: If M is a strictly
pseudoconvex real-analytic hypersurface, and if p ∈ M has the property
that it possesses a neighbourhood consisting of umbilical points, then there
exists a neighbourhood U ⊂M of p which is biholomorphically equivalent to
a piece of the model hypersurface. The same holds for smooth M if one re-
places “biholomorphically equivalent” by “C∞-CR equivalent”, and the fact
can simply be stated by saying that every umbilical hypersurface is locally
spherical.

2.2. Segre varieties. Let M ⊂ CN be a real-analytic hypersurface, defined
locally at p ∈ M by a real-analytic equation %(Z, Z̄) = 0. To be more
precise, here we assume that %(Z,W ) is holomorphic on U × U∗ ⊂ C2N ,
where U∗ =

{
Z : Z̄ ∈ U

}
, and %W (Z,W ) 6= 0 for (Z,W ) ∈ U × U∗. then

one can define the Segre variety associated to the point q (in a suitable
neighbourhood V of p) by

Sq = {z ∈ U : %(z, q̄) = 0} , q ∈ V.
For good choices of U and V , for every q ∈ V , the variety Sq ⊂ U is
a connected, smooth complex hypersurface in U . One can check that for
p ∈ M , we have that TpSp = T cpM . Actually, a bit more is true: given
p ∈ M , and a real-analytic curve Γ ⊂ M through p transverse to T cpM ,
one can choose coordinates Z = (z1, . . . , zN−1, w) near p such that in these
coordinates, p = 0, and Γ = {(0, . . . , 0, it)} and for small s, we have that
S(0,s) = {w = −s} (see e.g. [15, Lemma 4.1]).

The importance of Segre varieties is that they transform very nicely with
respect to holomorphic maps: If H is a germ of a holomorphic map tak-
ing a real-analytic submanifold M ⊂ CN into a real-analytic submanifold
M ′ ⊂ CN ′

, then H(Sp) ⊂ S′H(p), where S′q′ denotes the Segre variety of M ′

(associated to q′).

2.3. Stationary discs. Let M = {% = 0} be a smooth hypersurface in
CN . A disc f : ∆ → CN continuous up to b∆ and holomorphic in ∆ is
attached to M if f(b∆) ⊂M . Following Lempert [16], such a map is called
stationary if there exists a continuous function c : b∆ → R∗ such that the
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map ζc(ζ)∂%(f(ζ)), defined on b∆, extends holomorphically into ∆. Here
∂% = ∂Z% denotes the complex gradient of %. Equivalently, one can require
that f allows for a meromorphic lift with a pole of order at most 1 to the
conormal bundle N ∗M . For details on that, we refer the reader e.g. to [2].
We will only deal with small discs f .

2.4. Spaces of functions with parameters. Here, we recall spaces of
functions with parameters defined in [17], suitable for the study of de-
formations of Riemann maps [3, Corollary 9.4] we are going to use. Let
I = [0, 1] ⊂ R, let Ω be a bounded open set in a Euclidean space and let
k, j ≥ 0 be integers and let 0 ≤ α < 1, We denote by Ck+α(Ω) the standard

Hölder space with its usual norm | · |k+α. Define Ĉk+α,j(Ω, I) to be the set
of functions f defined on Ω× I such that for all integers 0 ≤ l ≤ j, the map
t 7→ ∂ltf(., t) is continuous from I into Ck(Ω) and such that

‖f‖k+α,j := max
0≤l≤j

sup
t∈I
|∂ltf(·, t)|k+α <∞.

We now define

Ck+α,j(Ω, I) :=
⋂

0≤l≤j
Ĉk−l+α,l(Ω, I),

and

|f |k+α,j := max
0≤l≤j

‖f‖k−l+α,l.

As pointed out in [3], we have the following inclusion:

(1) Ck+α(Ω× I) ⊂ Ck+α,k(Ω, I).

In the present paper we will also need:

Lemma 2.1. The following inclusion holds

Ck+1+α,k+1(Ω, I) ⊂ Ck(Ω× I).

Proof. Let f ∈ Ck+1+α,k+1(Ω, I). We first note that f is k-times differen-
tiable. Now let p, q ≥ 0 be two integers with p+q = k and let (x, t), (x′, t′) ∈
Ω× I sufficiently close to each other. We have

|∂px∂
q
t f(x, t)− ∂px∂

q
t f(x′, t′)|

≤ |∂px∂
q
t f(x, t)− ∂px∂

q
t f(x, t′)|+ |∂px∂

q
t f(x, t′)− ∂px∂

q
t f(x′, t′)|

≤ sup
s∈I
|∂px∂

q+1
t f(x, s)||t− t′|+ sup

y∈[x,x′]
|∂p+1
x ∂qt f(y, t′)|‖x− x′‖

≤ sup
s∈I
|∂q+1
t f(·, s)|k+1+α|t− t′|+ sup

s∈I
|∂qt f(·, s)|k+1+α‖x− x′‖

≤ |f |k+1+α,k+1|t− t′|+ |f |k+1+α,k+1‖x− x′‖,

which proves the lemma. �
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3. A further result and proof of the main theorem

In order to prove Theorem 1.1, we shall make use of the following result
which is valid for finitely smooth real hypersurfaces in C2. We use the
following convention: We write O(|z|k) (resp. O(tk)) to denote a function of
class at least Ck which is bounded by |z|k (resp. tk) up to a multiplicative
constant.

Theorem 3.1. Let S ⊂ C2 be a C8+α-smooth real hypersurface through the
origin, with α > 0, whose defining equation (near the origin) can be written
in the form

%(z, w, z, w) = Rew − |z|2 +Az2z4 +Az4z2 + Imw h(z, z, Imw) + g(z, z),

with g(z, z) = O(|z|7). If the discs Ωt = {w = t2}∩{% > 0}, for small t ∈ R,
are stationary, then A = 0.

Theorem 1.1 is a straightforward consequence of Theorem 3.1: the re-
sult of Huang [12] already mentioned in the introduction shows that the
extremal discs we consider are actually stationary, and the results of Chern
and Moser summarized in subsection 2.1 show that there exists a spherical
neighbourhood of 0 in S. The rest of this section is devoted to the proof of
Theorem 3.1, which is going to be developed in a series of lemmas.

First note that if for any t ∈ R we write St = {w = t2}∩S, then for |t| > 0
small enough, St is a closed curve (of class C8+α) contained in S, bounding
Ωt. For t small enough, we will have that (0, t2) ∈ Ωt. We denote by π1

the projection onto the first coordinate and for all |t| > 0 small enough, we
consider Rt : ∆ → π1(Ωt) the (uniquely determined) Riemann map such
that Rt(0) = 0, R′t(0) > 0. Define ft : ∆ → C2 as ft(ζ) = (Rt(ζ), t2). By
construction, each ft is an analytic disc attached to S. In the following, for
the sake of notational simplicity, we will identify Ωt with π1(Ωt) (as well as
St with π1(St)).

By definition, ft is stationary if and only if there exists a continuous
function at : b∆ → R+ and holomorphic functions z̃t, w̃t ∈ O(∆) ∩ C(∆)
satisfying

(2)
z̃t(ζ) = ζat(ζ)

∂%

∂z
(Rt(ζ), t2, Rt(ζ), t2)

w̃t(ζ) = ζat(ζ)
∂%

∂w
(Rt(ζ), t2, Rt(ζ), t2)

for all ζ ∈ b∆.
Let now R−1

t : Ωt → ∆ be the inverse of the Riemann map. Note that
R−1
t is smooth of class C8+α up to the boundary St by Kellogg’s theorem

[14] (see e.g. the book of Pommerenke [19]). We also note that we can write

R−1
t (z) = zeϕt(z) for a suitable holomorphic function ϕt : Ωt → ∆, where

ϕt is again smooth of class C8+α up to St. Applying (2) for ζ = R−1
t (z) we
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obtain

z̃t(R
−1
t (z)) = zeϕt(z)at(R

−1
t (z))

∂%

∂z
(z, t2, z, t2)

w̃t(R
−1
t (z)) = zeϕt(z)at(R

−1
t (z))

∂%

∂w
(z, t2, z, t2)

for all z ∈ bΩt = St. Putting bt(z) = at(R
−1
t (z)), Zt(z) = e−ϕt(z)z̃t(R

−1
t (z))

and Wt(z) = e−ϕt(z)w̃t(R
−1
t (z)) we can rewrite the system as

(3)
Zt(z) = zbt(z)

∂%

∂z
(z, t2, z, t2)

Wt(z) = zbt(z)
∂%

∂w
(z, t2, z, t2)

for z ∈ St. Here bt is a continuous positive function on St and the functions
Zt,Wt extend holomorphically to Ωt.

We will use systematically the following fact: a continuous function f :
St → C extends holomorphically to Ωt if and only if it satisfies the moment
conditions ∫

St

zmf(z)dz = 0 for all m ≥ 0.

Though this fact is well-known, we provide a proof for the convenience of
the reader. Denote by Cf the Cauchy transform

Cf(z) =
1

2πi

∫
St

f(ζ)

ζ − z
dζ.

By Plemelj’s formula, f extends holomorphically if and only if Cf(z) = 0
for z 6∈ Ωt. For any fixed z outside Ωt, 1/(ζ − z) can be approximated
uniformly by polynomials on St by Runge’s theorem. Since the moment
conditions mean that the integral of f against any holomorphic polynomial
vanishes, we deduce that f extends holomorphically whenever it satisfies the
moment conditions. The opposite implication is a consequence of Cauchy’s
integral formula.

Consider the scaling Λt : C → C defined by Λt(z) = z/t. We set Ω̃t =

Λt(Ωt), S̃t = Λt(St), and Ω̃0 = ∆ (with S̃0 = b∆). A change of variables in
the above integral implies that f : St → C extends holomorphically to Ωt if
and only if it satisfies the moment conditions∫

S̃t

zmf(tz)dz = 0 for all m ≥ 0.

In order to compute integrals of this kind, we use polar coordinates (r, θ)

and parametrize the curve S̃t according to the following Lemma.

Lemma 3.2. If we parametrize the curve S̃t as θ 7→ r(θ, t)eiθ, then the
function r is of class C6+α in both variables in a full neighbourhood of (0, 0) ∈
R2, and can be written as

r(θ, t) = 1 + k(θ)t4 + r5(θ, t)

where k(θ) = Re (Ae−2iθ) and r5(θ, t) = O(|t|5).
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Proof. The function r satisfies %(tr(θ, t)eiθ, t2, tr(θ, t)e−iθ, t2) ≡ 0, i.e.

(4) t2 − t2r2(θ, t) + 2k(θ)t6r6(θ, t) + g(tr(θ, t)eiθ, tr(θ, t)e−iθ) = 0.

Since g(z, z) = O(|z|7) we have g(tr(θ, t)eiθ, tr(θ, t)e−iθ) = t2G(θ, t) where
G is of class C6+α and satisfies G(θ, t) = O(t5). This allows us to rewrite
(4) as

1− r2(θ, t) + 2k(θ)t4r6(θ, t) +G(θ, t) = 0.

The implicit function theorem allows us to solve this equation with a unique
r of class C6+α satisfying r(θ, 0) = 1. Taking successive derivatives it is

immediate that ∂jr
∂tj

(θ, 0) = 0 for j = 1, 2, 3 and

−2r(θ, t)
∂4r

∂t4
(θ, t) + 4! · 2k(θ) +O(t) = 0,

so that ∂4r
∂t4

(θ, 0) = 4!k(θ). This concludes the proof of the lemma. �

The lemma above allows us to extend the boundary parametrization of

S̃t to the interior of the unit disc, to obtain a family of diffeomorphisms

Γt = Γ(·, t) : ∆ → Ω̃t which is C6+α in both variables z and t and equal to
the identity for t = 0. We shall (if necessary) rescale with a map of the form
(z, w) 7→ (λz, λ2w) to have that Γ ∈ C6+α(∆× I), where I = [−1, 1].

Lemma 3.3. The map R−1
t ◦ Λ−1

t ◦ Γt : ∆→ ∆ is in C5(∆× I) and is, for
t = 0, the identity.

Proof. Since the family of diffeomorphisms Γt : ∆ → Ω̃t is C6+α in both
variables z and t, we can apply (1) to obtain that Γ ∈ C6+α,6(∆ × I). By
[3, Corollary 9.4], we have R−1

t ◦ Λ−1
t ◦ Γt ∈ C6+α,6(∆ × I) and by Lemma

2.1 it follows that R−1
t ◦ Λ−1

t ◦ Γt ∈ C5(∆× I).

Since Ω̃0 = ∆ and since the Riemann map R−1
t ◦ Λ−1

t : Ω̃t → ∆ is chosen
in such a way that Rt(0) = 0, R′t(0) > 0 and so R−1

t ◦ Λ−1
t (0) = 0 and(

R−1
t ◦ Λ−1

t

)′
(0) > 0, it follows that R−1

t ◦ Λ−1
t is the identity for t = 0.

Finally note that by definition, Γ0 is the identity. �

We will now apply the moment conditions to the second equation in (3):∫
S̃t

zm
(
zbt(tz)

∂%

∂w
(tz, t2, tz, t2)

)
dz = 0 for all m ≥ 0

or equivalently∫
S̃t

zjbt(tz)
∂%

∂w
(tz, t2, tz, t2)dz = 0 for all j ≥ 1.

Computing ∂%/∂w we get

∂%

∂w
(z, w, z, w) =

1

2
− i

2
h(z, z, Im w) + Im w

∂

∂w
(h(z, z, Im w))

so that
∂%

∂w
(tz, t2, tz, t2) =

1

2
− i

2
h(tz, tz, 0).
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Hence bt(tz) must satisfy∫
S̃t

zjbt(tz)

(
1

2
− i

2
h(tz, tz, 0)

)
dz = 0 for all j ≥ 1.

Using the parametrization θ 7→ r(θ, t)eiθ for S̃t the integral becomes
(5)∫ 2π

0
rjeijθbt(tre

iθ)

(
1

2
− i

2
h(treiθ, tre−iθ, 0)

)(
∂r

∂θ
+ ir

)
eiθdθ = 0 for all j ≥ 1,

where we write r = r(θ, t) for brevity.
For a continuous function at : b∆→ R+ satisfying (2), we define

c(θ, t) = bt(tr(θ, t)e
iθ) = bt(Λ

−1
t ◦ Γt(e

iθ)) = at(R
−1
t ◦ Λ−1

t ◦ Γt(e
iθ)).

Lemma 3.4. There is a choice of at such that the function c(θ, t) is C4 in

a neighbourhood of [0, 2π] × {0} and satisfies
∫ 2π

0 c(θ, t)dt = 1 for all t 6= 0
small enough.

We note that the normalization condition can of course be assumed be-
cause the sign of c is fixed. The point of the Lemma is the smoothness of
the function at.

Proof. Recall that by Lemma 3.3, R−1
t ◦ Λ−1

t ◦ Γt is of class C5. From Pang
[18], if ft(ζ) = (Rt(ζ), t2) is stationary and satisfies (2) for a continuous
function at : b∆→ R+, then at is a positive multiple of ât, which is defined
for ζ ∈ b∆ by

1

ât(ζ)
= ζ∂%(ft(ζ)) · f ′t(ζ).

First the map

∂%(ft(R
−1
t ◦ Λ−1

t ◦ Γt(e
iθ))) = ∂%(tΓt(e

iθ), t2)

is C6+α. Note that by the chain rule, we have

d

dθ

(
tΓt(e

iθ)
)

=
d

dθ
Rt ◦

(
R−1
t ◦ Λ−1

t ◦ Γt(e
iθ)
)

= R′t

(
R−1
t ◦ Λ−1

t ◦ Γt(e
iθ)
) d

dθ

(
R−1
t ◦ Λ−1

t ◦ Γt(e
iθ)
)

since Rt is holomorphic. It follows that

f ′t(R
−1
t ◦ Λ−1

t ◦ Γt(e
iθ)) =

(
d
dθ

(
tΓt(e

iθ)
)

d
dθ

(
R−1
t ◦ Λ−1

t ◦ Γt(eiθ))
) , 0) .

Since
(
R−1
t ◦ Λ−1

t ◦ Γt(e
iθ)
)

is C5 and equal to eiθ +O(t) by Lemma 3.3, the

function d
dθ

(
R−1
t ◦ Λ−1

t ◦ Γt(e
iθ)
)

is C4 and equal to ieiθ for t = 0. This

shows that the function f ′t(R
−1
t ◦ Λ−1

t ◦ Γt(e
iθ)) is C4 and therefore that



EXTREMAL DISCS AND SEGRE VARIETIES 11

1/ât(R
−1
t ◦Λ

−1
t ◦Γt(eiθ)) is C4. Finally, note that since tΓt(e

iθ) = teiθ+O(t2)
and ∂z%(z, w) = z +O(|z|5), we have

d
dθ

(
tΓt(e

iθ)
)

d
dθ

(
R−1
t ◦ Λ−1

t ◦ Γt(eiθ))
) =

iteiθ +O(t2)

ieiθ +O(t)
= t+O(t2),

and

∂z%(R−1
t ◦ Λ−1

t ◦ Γt(e
iθ), t2) = te−iθ +O(t2)

from which it follows directly that

1

ât(R
−1
t ◦ Λ−1

t ◦ Γt(eiθ))
= t2 +O(t3).

The function ãt = t2ât satisfies all of the required properties and can be

rescaled so that
∫ 2π

0 c(θ, t)dt = 1 for all t 6= 0 small enough without changing
the smoothness of c. �

Since h(z, z, 0) = O(|z|6), using Lemma 3.2 we deduce that h(treiθ, tre−iθ, 0) =
O(t6), and furthermore

r(θ, t)j = 1 + jk(θ)t4 +O(t5),(6)

∂r

∂θ
(θ, t) =

dk

dθ
(θ)t4 +O(t5).(7)

Thus we can rewrite (5) as∫ 2π

0
cei(j+1)θ(1+jkt4+O(t5))

(
1

2
+O(t6)

)(
i+

(
dk

dθ
+ ik

)
t4 +O(t5)

)
dθ = 0

for all j ≥ 1. Further developing the products we obtain

(8)

∫ 2π

0
ei(j+1)θc(θ, t)

(
i+

(
i(j + 1)k(θ) +

dk

dθ
(θ)

)
t4 +O(t5)

)
dθ = 0

for all j ≥ 1. For all |t| small enough we expand the function c(·, t) in
its Fourier series c(θ, t) =

∑+∞
k=−∞ γk(t)e

ikθ, where γk is C4 for all k ∈ Z,
γ−k = γk and γ0(t) ≡ 1 due to our normalization. We insert this series in (8)
and ignore for the moment the precise expression of the factor multiplying
t4: ∫ 2π

0
ei(j+1)θ

+∞∑
k=−∞

γk(t)e
ikθdθ = O(t4),

which means that

(9) γj+1(t) = O(t4) for all j ≥ 1.

Next, we write also k(θ) = Ae−2iθ/2+Ae2iθ/2 and dk
dθ (θ) = −iAe−2iθ+iAe2iθ

as Fourier polynomials, so that

i(j + 1)k(θ) +
dk

dθ
(θ) = i

j − 1

2
Ae−2iθ + i

j + 3

2
Ae2iθ
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and we take the fourth derivative of (8) with respect to t:

4∑
`=0

(
4

`

)∫ 2π

0

∂`c

∂t`
ei(j+1)θ·

·
(
δ`4 +

4!t`

`!

(
j − 1

2
Ae−2iθ +

j + 3

2
Ae2iθ

)
+O(t`+1)

)
dθ = 0

where δ`4 = 1 if ` = 4 and δ`4 = 0 otherwise, and we divided by the common

factor i. Replacing ∂`c
∂t`

(θ, t) with its Fourier series, we see that

4∑
`=0

(
4

`

)
·

·

(
d`γj+1

dt`
(t)δ`4 +

4!

`!

(
j − 1

2
A
d`γj−1

dt`
(t) +

j + 3

2
A
d`γj+3

dt`
(t)

)
t` +O(t`+1)

)
= 0

for all j ≥ 1. In particular for j = 1

4∑
`=0

(
4

`

)(
d`γ2

dt`
(t)δ`4 +

4!

`!

(
2A

d`γ4

dt`
(t)

)
t` +O(t`+1)

)
= 0.

All the terms in the previous sum are O(t) except for ` = 0 and ` = 4:

d4γ2

dt4
(t) + 4! · 2Aγ4(t) = O(t),

which by (9) implies that

(10)
d4γ2

dt4
(t) = O(t).

We now turn to the first equation in (3). The moment conditions read∫
S̃t

zjbt(tz)
∂%

∂z
(tz, t2, tz, t2)dz = 0 for all j ≥ 1,

and since
∂%

∂z
(z, w, z, w) = −z+2Azz4+4Az3z2+Imw

∂h

∂z
(z, z, Imw)+

∂g

∂z
(z, z), so that

∂%

∂z
(tz, t2, tz, t2) = −tz + 2At5zz4 + 4At5z3z2 +

∂g

∂z
(tz, tz),

by using the parametrization θ → reiθ the integral turns into∫ 2π

0
ei(j+1)θbt

(
−trj+1e−iθ + t5rj+5(2Ae−3iθ + 4Aeiθ) + rj

∂g

∂z

)(
∂r

∂θ
+ ir

)
dθ = 0

for all j ≥ 1. Since ∂g
∂z (z, z) = O(|z|6) we have rj ∂g∂z (treiθ, tre−iθ) = O(t6).

We use now (6) and recall that bt(tre
iθ) = c(θ, t) to rewrite the previous

equation as∫ 2π

0
ei(j+1)θc(θ, t)

(
−(t+ (j + 1)k(θ)t5)e−iθ + t5(2Ae−3iθ + 4Aeiθ) +O(t6)

)
·
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·
(
i+

(
dk

dθ
(θ) + ik(θ)

)
t4 +O(t5)

)
dθ = 0 for all j ≥ 1.

We substitute the expression of k(θ) and divide by −t to obtain∫ 2π

0
ei(j+1)θc(θ, t)

(
e−iθ +

(
j − 3

2
Ae−3iθ +

j − 7

2
Aeiθ

)
t4 +O(t5)

)
·

·
(
i+

(
− i

2
Ae−2iθ +

3i

2
Ae2iθ

)
t4 +O(t5)

)
dθ = 0 for all j ≥ 1,

and after carrying out the products and dividing by i,∫ 2π

0
c(θ, t)

(
eijθ +

j − 4

2

(
Aei(j−2)θ +Aei(j+2)θ

)
t4 +O(t5)

)
dθ = 0

for all j ≥ 1. Once again we differentiate under the integral sign with respect
to t four times:

4∑
`=0

(
4

`

)∫ 2π

0

+∞∑
k=−∞

d`γk
dt`

(t)eikθ·

·
(
δ`4e

ijθ +
4!

`!

j − 4

2

(
Aei(j−2)θ +Aei(j+2)θ

)
t` +O(t`+1)

)
dθ = 0

which translates into
4∑
`=0

(
4

`

)(
d`γj
dt`

(t)δ`4 +
4!

`!

j − 4

2

(
A
d`γj−2

dt`
(t) +A

d`γj+2

dt`
(t)

)
t` +O(t`+1)

)
= 0.

Taking j = 2 we have

4∑
`=0

(
4

`

)(
d`γ2

dt`
(t)δ`4 −

4!

`!

(
A
d`γ0

dt`
(t) +A

d`γ4

dt`
(t)

)
t` +O(t`+1)

)
= 0;

except for ` = 4 and ` = 0 every term is O(t), hence we get

d4γ2

dt4
(t)− 4!

(
Aγ0(t) +Aγ4(t)

)
= O(t).

Recalling that γ0 ≡ 1 due to our normalization, and using (9), (10), we
deduce that A = O(t). This is only possible if A = 0.
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