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ABSTRACT. We construct some lift of an almost complex structure to thecotangent bundle, using a connection
on the base manifold. This unifies the complete lift defined byI.Sato and the horizontal lift introduced by
S.Ishihara and K.Yano. We study some geometric properties of this lift and its compatibility with symplectic
forms on the cotangent bundle.

INTRODUCTION

Analysis on almost complex manifolds recently became an indispensable tool in symplectic geometry
with the celebrated work of M.Gromov in [3]. The local existence of pseudoholomorphic discs proved
by A.Nijenhuis-W.Woolf in their famous paper [6], allows tolead some local analysis on such manifolds.
There is a natural and deep connection beetwen local analysis on complex and almost complex manifolds and
canonical bundles. For instance, the cotangent bundle is tightly related to extension of biholomorphisms and
to the study of stationnary discs. Morever, it is well known that the cotangent bundle plays a very important
role in symplectic geometry and its applications, since this carries a canonical symplectic structure induced
by the Liouville form.

Several lifts of an almost complex structure on a base manifold are constructed on the cotangent bundle.
These are essentially due to I.Sato in [7] and S.Ishihara-K.Yano in [10]. I.Sato defined a lift of the ambient
structure as a correction of thecomplete lift; S.Ishihara-K.Yano introduced thehorizontal lift obtained via a
symmetric connection. The aim of the present paper is to unifiy and to generalize these lifts by introducing
a more natural almost complex lift called thegeneralized horizontal lift.

It turns out that our construction depends on the introduction of some connection : we study the depen-
dence of the lift on it. Our main result states that the structure defined by I.Sato and thehorizontal lift are
special cases of our general construction, obtained by particular choices of connections (Theorem 2.1). We
establish some geometric properties of this general lift (Theorems 3.1 and 3.2). Then we characterize gener-
ically the structure constructed by I.Sato by the holomorphicity of the lift of a given diffeomorphism on the
bases and by the holomorphicity of the complex fiberwise multiplication (Corollary 3.1 and Corollary 3.2).

Finally, we study the compatibility between lifted almost complex structures and symplectic forms on the
cotangent bundle. The conormal bundle of a strictly pseudoconvex hypersurface is a totally real maximal
submanifold in the cotangent bundle endowed with the structure defined by I.Sato. This was proved by
S.Webster ([9]) for the standard complex structure, and by A.Spiro ([8]), and independently by H.Gaussier-
A.Sukhov ([2]), for the almost complex case. One can search for a symplectic proof of this, since every
Lagrangian submanifold in a symplectic manifold is totallyreal for almost complex structures compatible
with the symplectic form. We prove that for every almost complex manifold and every symplectic form
on T ∗M compatible with thegeneralized horizontal lift, the conormal bundle of a strictly pseudoconvex
hypersurface is not Lagrangian (Proposition 4.1). This illustrates the singular fact that to study local complex
(or almost complex) geometry, we naturally use structures which are not compatible with the canonical
symplectic form of the cotangent bundle.
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1. PRELIMINARIES

Let M be a real smooth manifold of even dimensionn. We denote byTM and T ∗M the tangent
and cotangent bundles overM , by Γ(TM) and Γ(T ∗M) the sets of sections of these bundles and by
π : T ∗M −→ M the fiberwise projection. We consider local coordinates systems(x1, · · · , xn) in M

and(x1, · · · , xn, p1, · · · , pn) in T ∗M . We do not write any sum symbol; we use Einstein summation con-
vention.

1.1. Almost complex structures.

Definition 1.1. An almost complex structure onM is a tensor fieldJ of type(1, 1) which satisfiesJ2 = −Id.
The pair(M,J) is called an almost complex manifold.

In local coordinates,J is given byJk
l dxl ⊗ ∂xk.

We say that a mapf : (M,J) −→ (M ′, J ′) between two almost complex manifolds is(J, J ′)-
holomorphic if :

J ′(f(x)) ◦ dxf = dxf ◦ J(x), for everyx ∈ M.

If f : (M,J) −→ M ′ is a diffeomorphism, we define the direct image ofJ by f by :

f∗J(y) := df−1(y)f ◦ J(f−1(y)) ◦ dyf
−1, for everyy ∈ M ′.

The tensor fieldf∗J is an almost complex structure onM ′ for whichf is (J, f∗J)-holomorphic.
We recall that the Nijenhuis tensor of the almost complex structureJ is defined by :

NJ(X,Y ) := [JX, JY ] − J [X,JY ] − J [JX, Y ] − [X,Y ] for X,Y ∈ Γ(TM).

1.2. Tensors and contractions.Let θ be the Liouville form onT ∗M . This one-form is locally given by
θ = pidxi. The two-formωst := dθ is the canonical symplectic form on the cotangent bundle, with local
expressionωst = −dxk ∧ dpk. We stress out that these forms do not depend on the choice of coordinates on
T ∗M .

We denote byT r
q M the space ofq covariant andr contravariant tensors onM . For positiveq, we consider

the contraction mapγ : T 1
q M → T 1

q−1(T
∗M) defined by :

γ(R) := pkR
k
i1,··· ,iqdxi1 ⊗ · · · ⊗ dxiq−1 ⊗ ∂piq

for R = Rk
i1,··· ,iq

dxi1 ⊗ · · · ⊗ dxiq ⊗ ∂xk.

We also define aq-form onT ∗M by θ(R) := pkR
k
i1,··· ,iq

dxi1 ⊗ · · · ⊗ dxiq for a tensorR ∈ T 1
q M onM .

We notice thatθ(R)(X1, · · · ,Xq) = θ(R(dπ(X1), · · · , dπ(Xq))) for X1, · · · ,Xq ∈ Γ(T ∗M).
Since the canonical symplectic formωst establishes a correspondence between q-forms andT 1

q−1M , one
may define the contraction mapγ using the Liouville formθ andωst by setting, forX1, · · · ,Xq ∈ Γ(T ∗M) :

t(θ(R))(X1, · · · ,Xq) = −ωst(X1, γ(R)(X2, · · · ,Xq)),

wheret(θ(R))(X1, · · · ,Xq) = θ(R)(X2, · · · ,Xq,X1).
For a tensorR ∈ T 1

2 M , we have a matricial interpretation of the contractionγ; if Rk
i,j are the coordinates

of R thenγ(R) is given by :

γ(R) =

(
0 0
ai

j 0

)
∈ M2n(R), with ai

j = pkR
k
j,i.

1.3. Connections. Let ∇ be a connection on an almost complex manifold(M,J). We denote byΓk
i,j

its Christoffel symbols defined by∇∂xi
∂xj = Γk

i,j∂xk. Let also Γi,j defined in local coordinates
(x1 · · · , xn, p1, · · · , pn) onT ∗M by the equalitypkΓ

k
i,j = Γi,j.

The torsionT of ∇ is defined by :

T (X,Y ) := ∇XY −∇Y X − [X,Y ], for everyX,Y ∈ Γ(TM).

There are “natural” families of connections on an almost complex manifold.
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Definition 1.2. A connection∇ onM is called :

(1) almost complex when∇X(JY ) = J∇XY for everyX,Y ∈ Γ(TM),
(2) minimal when its torsionT is equal to1

4NJ ,
(3) symmetric when its torsionT is identically zero.

A.Lichnerowicz proved, in [5], that for any almost complex manifold, the set of almost complex and
minimal connections is nonempty. This fact is crucial in thefollowing.

We introduce a tensor∇J ∈ T 1
2 M which measures the lack of complexity of the connection∇ :

(1.1) (∇J)(X,Y ) := ∇XJY − J∇XY for everyX,Y ∈ Γ(TM).

Locally we have(∇J)ki,j = ∂xiJ
k
j − Jk

l Γl
i,j + J l

jΓ
k
i,l.

To the connection∇ we associate three other connections :

• ∇ := ∇− T . The Christoffel symbolsΓ
k
i,j of ∇ are given byΓ

k
i,j = Γk

j,i.

• ∇̃ := ∇ − 1
2T. The connectioñ∇ is a symmetric connection and its Christoffel symbolsΓ̃k

i,j are

given by :Γ̃k
i,j = 1

2(Γk
i,j + Γk

j,i).

• a connection on(M,T ∗M), still denoted by∇, and defined by :

(∇Xs)(Y ) := X.s(Y ) − s∇XY for everyX,Y ∈ Γ(TM) ands ∈ Γ(T ∗M).

Let x ∈ M and letξ ∈ T ∗M be such thatπ(ξ) = x. The horizontal distributionH∇ of ∇ is defined by :

H∇
ξ := {dxs(X), X ∈ TxM,s ∈ Γ(T ∗M), s(x) = ξ,∇Xs = 0} ⊆ TξT

∗M.

We recall thatdξπ induces an isomorphism betweenH∇
ξ andTxM. Moreover we have the following de-

composition :TξT
∗M = H∇

ξ ⊕T ∗
xM. So an elementY ∈ TξT

∗M decomposes asY = (X, v∇(Y )), where

v∇ : TξT
∗M −→ T ∗

xM is the projection on the vertical spaceT ∗
xM parallel toH∇

ξ .

2. GENERALIZED HORIZONTAL LIFT ON THE COTANGENT BUNDLE

Let (M,J) be an almost complex manifold. We first recall the definitionsof the structures constructed
by I.Sato and S.Ishihara-K.Yano. Then we introduce a new almost complex lift ofJ to the cotangent bundle
T ∗M overM and we prove that this unifies the complete lift and the horizontal lift.

2.1. Complete and horizontal lifts. We consider the complete lift denoted byJc and defined by I.Sato in
[7] as follows : letθ(J) be the one-form onT ∗M with local expressionθ(J) = pkJ

k
l dxl. We defineJc by

the identityd(θ(J)) = ωst(J
c., .). ThenJc is locally given by :

Jc =

(
J i

j 0

pk(∂xjJ
k
i − ∂xiJ

k
j ) J

j
i

)
.

The complete liftJc is an almost complex structure onT ∗M if and only if J is an integrable structure on
M , that is if and only ifM is a complex manifold. Introducing a correction term which involves the non
integrability ofJ , I.Sato obtained an almost complex structure on the cotangent bundle ([7]); this is given
by :

J̃ := Jc −
1

2
γ(JNJ ).

For convenience we will also call̃J thecomplete liftof J . The coordinates ofJNJ are given by :

JNJ(∂xi, ∂xj) = [−∂xjJ
k
i + ∂xiJ

k
j + Jk

s J
q
i ∂xqJ

s
j − Jk

s J
q
j ∂xqJ

s
i ]dxk.

Thus we have the following local expression ofJ̃ :

J̃ =

(
J i

j 0

Bi
j J

j
i

)
, with Bi

j =
pk

2
[∂xjJ

k
i − ∂xiJ

k
j + Jk

s J
q
i ∂xqJ

s
j − Jk

s J
q
j ∂xqJ

s
i ].
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We now recall the definition of the horizontal lift of an almost complex structure. Let∇ be a connection
onM and∇̃ := ∇− 1

2T . The horizontal lift ofJ is defined in [10] by :

JH,∇ := Jc + γ([∇̃J ]),

where the tensor[∇̃J ] ∈ T 1
2 M is given by :

[∇̃J ](X,Y ) := −(∇̃J)(X,Y ) + (∇̃J)(Y,X), for everyX,Y ∈ Γ(TM) (∇̃J is defined in (1.1)).

S.Ishihara and K.Yano proved thatJH,∇ is an almost complex structure onT ∗M . It is important to notice
that without symmetrizing∇, the horizontal lift ofJ is not an almost complex structure. The structureJG,∇

is locally given by :

JH,∇ =

(
J i

j 0

Γ̃i,lJ
l
j − Γ̃j,lJ

l
i J

j
i

)
.

The complete and the horizontal lifts are both a correction of Jc. Our aim is to unify and to characterize
these two almost complex structures.

2.2. Construction of the generalized horizontal lift. Let x ∈ M and letξ ∈ T ∗M be such thatπ(ξ) = x.
Assume thatH is a distribution satisfying the local decompositionTξT

∗M = Hξ⊕T ∗
xM . From an algebraic

point of view it is natural to lift the almost complex structure J as a product structure, that isJ ⊕ tJ with
respect toHξ ⊕ T ∗

xM . Since any such distribution determines and is determined by a unique connection
one may define a lifted almost complex structure using a connection (this point of view is inspired by
P.Gauduchon in [1]).

Let ∇ be a connection onM . We consider the connection induced by∇ on (M,T ∗M), defined in
subsection 2.3. As illustrated by Figure 1, we define, for a vector Y = (X, v∇(Y )) ∈ TξT

∗M = H∇
ξ ⊕

T ∗
xM :

JG,∇(Y ) := (JX, tJ(v∇(Y ))),

whereJX = (dξπ|H∇

ξ
)−1(J(x)dξπ(X)).

�
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�
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�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

TxM

T ∗
x M

tJ

dξπ

H∇
ξ

(dξπ|H∇

ξ
)−1

J

dξπ(X) J(dξπ(X))

Figure 1. Construction of the generalized horizontal liftJG,∇.

tJ(v∇(Y )) Y

X

JX

v∇(Y )

JG,∇(Y )
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Definition 2.1. The almost complex structureJG,∇ is called the generalized horizontal lift ofJ associated
to the connection∇.

We first study the dependence ofJG,∇ on the connection∇.

Proposition 2.1. Assume that∇ and∇′ are two connections on(M,J). ThenJG,∇ = JG,∇′

if and only if
the tensorL := ∇′ −∇ satisfiesL(J., .) = L(., J.).

Proof. . Let ∇ and∇′ be two connections on(M,J) and letL ∈ T 1
2 (M) be the tensor defined byL :=

∇′ −∇. We notice that, considering the induced connections on(M,T ∗M), we have :

∇′
Xs = ∇Xs − s(L(X, .)).

Moreover :

v∇
′

(Y ) = v∇(Y ) − ξ(L(dξπ(X), .)),

whereY = (X, v∇(Y )) ∈ TξT
∗M .

A vector Y ∈ TξT
∗M can be writtenY = (X, v∇(Y )) in the decompositionH∇

ξ ⊕ T ∗
x M of TξT

∗M

andY = (X ′, v∇
′

(Y )) in H∇′

ξ ⊕ T ∗
xM , with dξπ(X) = dξπ(X ′). By construction we havedξπ(JX) =

dξπ(JX ′). ThusJG,∇′

= JG,∇ if and only if v∇(JG,∇′

Y ) = v∇(JG,∇Y ) for every ξ ∈ T ∗M and
Y ∈ TξT

∗M . Let us computev∇(JG,∇′

Y ) :

v∇(JG,∇′

Y ) = v∇
′

(JG,∇′

Y )) + ξ(L(Jdξπ(X), .))

= tJ(v∇
′

(Y )) + ξ(L(Jdξπ(X), .))
= tJ(v∇(Y )) − tJξ(L(dξπ(X), .)) + ξ(L(Jdξπ(X), .))
= v∇(JG,∇Y ) − ξ(L(dξπ(X), J.)) + ξ(L(Jdξπ(X), .)).

SoJG,∇′

= JG,∇ if and only if L(dξπ(X), J.) = L(Jdξπ(X), .). Sincedξπ|H∇

ξ
is a bijection betweenH∇

ξ

andTxM , we obtain the result. �

A consequence of Proposition 2.1 is the following Corollary:

Corollary 2.1. Let∇ and∇′ be two minimal almost complex connections. One hasJG,∇′

= JG,∇.

Proof. Since∇ and∇′ have the same torsion, the tensorL := ∇ − ∇′ is symmetric. Moreover, since∇
and∇′ are almost complex, we haveL(., J.) = JL(., .). ThusL(J., .) = JL(., .) = L(., J.). �

We see from Corollary 2.1 that minimal almost complex connections are “natural” connections in almost
complex manifolds, to construct generalized horizontal lifts.

The links between the generalized horizontal liftJG,∇, the complete liftJ̃ , and the horizontal liftJH,∇

are given by the following Theorem :

Theorem 2.1. We have :

(1) JG,∇ = J̃ if and only if S = −1
2JNJ , whereS(X,Y ) = −(∇J)(X,Y ) + (∇J)(Y,X) +

T (JX, Y ) − JT (X,Y ),
(2) JG,∇ = JH,∇ if and only ifT (J., .) = T (., J.) and,
(3) For every almost complex and minimal connection, we haveJG,∇ = J̃ = JH,∇.

2.3. Proof of Theorem 2.1. The main idea of the proof is to find a tensorial expression of the generalized
horizontal structureJG,∇, involving Jc. In that way, we first describe locally the horizontal distribution
H∇ :

Lemma 2.1. We haveH∇
ξ =

{(
X

Γj,kX
j

)
,X ∈ TxM

}
for ξ ∈ T ∗M such thatπ(ξ) = x.
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Proof. Let us prove thatH∇
ξ ⊆

{(
X

Γj,kX
j

)
,X ∈ TxM

}
. Let Y ∈ H∇

ξ ; Y is equal todxs(X) where

X ∈ TxM ands is a section of the cotangent bundle such that∇Xs = 0. Locally we haves = sidxi,
X = Xi∂xi and so :

Y =

(
X

Xj∂xjsi

)
.

Since∇Xs = 0 we obtain :

0 = Xj∇∂xj
(sidxi) = Xjsi∇∂xj

dxi + Xj∂xjsidxi = −XjsiΓ
i
j,kdxk + Xj∂xjskdxk.

ThereforeXj∂xjsk = XjsiΓ
i
j,k = XjΓj,k. This proves the inclusion.

Moreover the following decomposition insures the equality:

TξT
∗M =

{(
X

Γj,kX
j

)
,X ∈ TxM

}
⊕ T ∗

x M.

�

The following Proposition gives the local expression of thegeneralized horizontal lift which is necessary
to obtain the desired tensorial expression stated in part (2).

Proposition 2.2.
(1) With respect to the local coordinates system(x1, · · · , xn, p1, · · · , pn), JG,∇ is given by :

JG,∇ =

(
J i

j 0

Γl,iJ
l
j − Γj,lJ

l
i J

j
i

)
.

(2) We haveJG,∇ = Jc + γ(S) with S(X,Y ) = −(∇J)(X,Y ) + (∇J)(Y,X) + T (JX, Y ) −
JT (X,Y ).

Proof. We first prove part (1). We denote byδi
j the Kronecker symbol. With respect to the local coordinates

system(x1, · · · , xn, p1, · · · , pn), the structureJG,∇ is locally given by :

JG,∇ =

(
J i

j 0

ai
j J

j
i

)
.

Since

(
δ
j
i

Γi,j

)
∈ H∇

ξ , it follows from Lemma 2.1, that for everyi ∈ {1, · · · , n} :

JG,∇

(
δ
j
i

Γi,j

)
=

(
J

j
i

Γk,jJ
k
i

)
.

Hence we have :ai
j = Γl,iJ

l
j − Γj,lJ

l
i . This concludes the proof of part (1).

Then we prove part (2). Using the local expression ofJc, we have :

JG,∇ = Jc +

(
0 0

−pk∂xjJ
k
i + pk∂xiJ

k
j + Γl,iJ

l
j − Γj,lJ

l
i 0

)
.

Since∇∂xi
(J∂xj) = ∂xiJ

k
j ∂xk + Γk

i,lJ
l
j∂xk, it follows that :

−pk∂xjJ
k
i + pk∂xiJ

k
j + Γl,iJ

l
j − Γj,lJ

l
i = pkdxk[−∇∂xj

(J∂xi) + ∇∂xi
(J∂xj)].

We defineS′(X,Y ) := −∇X(JY ) + ∇Y (JX) = −∇X(JY ) + ∇Y JX + T (JX, Y ) and we notice
that S′(∂xi, ∂xj) = −∇∂xi

(J∂xj) + ∇∂xj
(J∂xi). We point out thatS′ is not a tensor. However with a

correction term, we obtain the tensorS :

S(X,Y ) = S′(X,Y ) + J [X,Y ]
= −∇X(JY ) + ∇Y (JX) + T (JX, Y ) + J∇XY − J∇Y X − JT (X,Y )
= −(∇J)(X,Y ) + (∇J)(Y,X) + T (JX, Y ) − JT (X,Y ).
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The components ofS are given byS(∂xi, ∂xj) = S′(∂xi, ∂xj) and soJG,∇ = Jc + γ(S). �

Hence we may compare the three lifted structures via their intrinsic expressions given by :

• JG,∇ = Jc + γ(S) (Proposition 2.2),
• J̃ = Jc − 1

2γ(JNJ ) (see subsection 2.2) and,

• JH,∇ = Jc + γ([∇̃J ]) with [∇̃J ](X,Y ) = −(∇̃J)(X,Y ) + (∇̃J)(Y,X) (see subsection 2.2).

The lecture of the two first expressions gives part (1) of Theorem 2.1.
To prove (2), we notice that :

[∇̃J ](X,Y ) = −(∇̃J)(X,Y ) + (∇̃J)(Y,X)
= −(∇J)(X,Y ) + (∇J)(Y,X) + 1

2T (X,JY ) + 1
2T (JX, Y ) − JT (X,Y ).

Let us prove part (3) of Theorem 2.1. The equalityJG,∇ = J̃ follows from the fact that∇J = 0 because
the connection∇ is almost complex and from the equality−T (J., .)+JT (., ) = 1

4JNJ + 1
4JNJ = 1

2JNJ .

SinceT = 1
4NJ andNJ(J., .) = NJ(., J.) we haveJG,∇ = JH,∇.

The proof of Theorem 2.1 is now achieved. �

We end this section with :

Corollary 2.2. We haveJH,∇ = JG,∇̃.

Proof. This is a direct consequence of Theorem 2.1 sinceJH,∇ = JH,∇̃ andJG,∇̃ = JH,∇̃ by part (2).
�

We point out that Corollary 2.2 may also be proved using Lemma2.1 and the distributionD of horizontal
lifted vectors defined by S.Ishihara and K.Yano as follows : let x ∈ M andξ ∈ T ∗M such thatπ(ξ) = x.
AssumeXH,∇ is the horizontal lift ofX ∈ TxM on the cotangent bundle given in [10] by :

XH,∇ =

(
X

Γ̃j,kX
j

)
∈ TξT

∗M.

Then the distributionD of horizontal lifted vectors is defined byDξ = {XH,∇,X ∈ TxM}. S.Ishihara and
K.Yano proved thatJH,∇ = J ⊕ tJ in the decompositionTξT

∗M = Dξ ⊕T ∗
xM. From Lemma 2.1 we have

D = H∇̃ and finallyJH,∇ = J ⊕ tJ = JG,∇̃ with respect to the decompositionTξT
∗M = Dξ ⊕ T ∗

xM =

H∇̃
ξ ⊕ T ∗

xM.

3. GEOMETRIC PROPERTIES OF THE GENERALIZED HORIZONTAL LIFT

3.1. Lift Properties. In Theorem 3.1 we state the lift properties of the generalized horizontal lift of an
almost complex structure.

Theorem 3.1.

(1) The projectionπ : T ∗M −→ M is (JG,∇, J)-holomorphic.
(2) The zero sections : M −→ T ∗M is (J, JG,∇)-holomorphic.
(3) The lift of a diffeomorphismf : (M1, J1,∇1) −→ (M2, J2,∇2) to the cotangent bundle is

(JG,∇1

1 , J
G,∇2

2 )-holomorphic if and only iff is a (J1, J2)-holomorphic map satisfyingf∗S1 = S2.

We recall that the liftf̃ of a diffeomorphismf : M1 −→ M2 to the cotangent bundle is defined by
f̃ = (f, t(df)−1) and that the differentialdf̃ is locally given by :

df̃ =

(
df 0
(∗) t(df)−1

)
∈ M2n(R),

where(∗) denotes a(n × n) block of derivatives off with respect to(x1, · · · , xn).
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Proof of Theorem 3.1.Parts (1) and (2) are consequences of Proposition 2.2 (part (1)).
Let us prove part (3). Assume thatf : (M1, J1,∇1) −→ (M2, J2,∇2) is a(J1, J2)-holomorphic diffeo-

morphism satisfying̃f∗S1 = S2 and letf̃ be its lift to the cotangent bundle. According to Proposition 2.2,
we haveJG,∇i = Jc + γ(Si) for i = 1, 2. We denote byθi andωi,st the Liouville form and the canonical
symplectic form ofT ∗Mi. The invariance by lifted diffeomorphisms of these forms insure thatf̃∗θ1 = θ2

andf̃∗ω1,st = ω2,st. We also recall thatt(θi(Si)) = −ωi,st(., γ(Si).).
Let us establish the following equalitỹf∗(J

G,∇1

1 ) = J
G,∇2

2 . The first step consists in proving that the
direct image ofJc

1 by f̃ is Jc
2 . By the nondegeneracy ofω2,st, it is equivalent to obtain the equality

ω2,st(f̃∗J
c
1 ., .) = ω2,st(J

c
2 ., .) :

ω2,st(f̃∗J
c
1 ., .) = ω2,st(df̃ ◦ Jc

1 ◦ (df̃)−1., .)

= ω1,st(J
c
1 ◦ (df̃)−1., (df̃)−1)

= f̃∗(ω1,st(J
c
1 ., .))

= f̃∗d(θ1(J1)),
and,ω2,st(J

c
2 ., .) = d(θ2(J2)).

So let us prove that the pull-back ofθ2(J2) by f̃ is θ1(J1). According to the local expression ofdf̃ , we have
f̃∗(θ2(J2)) = θ2(J2 ◦ df) and then :

f̃∗(θ2(J2)) = θ2(df ◦ J1) = (f̃∗θ2)(J1) = θ1(J1).

Thus we obtaiñf∗d(θ1(J1)) = d(θ2(J2)), that isf̃∗J
c
1 = Jc

2 .
To show the result, we may prove that the direct image ofγ(S1) by f̃ is γ(S2). We prove more generally

that f∗(S1) = S2 if and only if f̃∗(γ(S1)) = γ(S2) which is equivalent to prove thatf∗(S1) = S2 if and
only if ω2,st(., f̃∗(γ(S1)).) = ω2,st(., γ(S2).). We have :

ω2,st(., f̃∗γ(S1).) = ω2,st(., df̃ ◦ γ(S1) ◦ (df̃)−1.)

= ω1,st((df̃ )−1., γ(S1) ◦ (df̃)−1., )

= f̃∗(ω1,st(., γ(S1).))

= −f̃∗(
tθ1(S1)).

Let us check thatf∗(S1) = S2 if and only if f̃∗t(θ1(S1)) = t(θ2(S2)). We have :

f̃∗(θ2(S2)) = θ2(S2(df, df)) andθ1(S1) = (f̃∗θ2)(S1) = θ2(df ◦ S1).

According to this fact and the definition ofθ(R), whereR ∈ T 1
2 M is given in the section1.2, it follows that

f∗S1 = S2 if and only if θ2(S2(df, df)) = θ2(df ◦ S1). Sof∗(S1) = S2 if and only if f̃∗(γ(S1)) = γ(S2).
Finally we have proved that iff : (M1, J1,∇1) −→ (M2, J2,∇2) is a (J1, J2)-holomorphic diffeomor-
phism satisfyingf∗S1 = S2 thenf̃ is (JG,∇1

1 , J
G,∇2

2 )-holomorphic.
Reciprocally iff̃ is (JG,∇1

1 , J
G,∇2

2 )-holomorphic thenf is (J1, J2)-holomorphic. Indeed the zero section
s1 : M1 −→ T ∗M1 is (J1, J

G,∇1

1 )-holomorphic by part (2) of Theorem 3.1, the projectionπ2 : T ∗M2 −→

M2 is (JG,∇2

2 , J2)-holomorphic by part (1) of Theorem 3.1 and we have the equality f = π2 ◦ f̃ ◦ s1. Since
f is (J1, J2)-holomorphic we havẽf∗Jc

1 = Jc
2 . Then the(JG,∇1

1 , J
G,∇2

2 )-holomorphicity off̃ implies the
equalityf̃∗(γ(S1)) = γ(S2), that isf∗S1 = S2.

�

As a Corollary, we obtain the lift properties of the completeand the horizontal lifts by considering special
connections. We point out that Theorem 3.1 and Corollary 3.1characterize the complete lift via the lift of
diffeomorphisms.

Corollary 3.1.
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(1) The lift of a diffeomorphismf : (M1, J1) −→ (M2, J2) to the cotangent bundle is(J̃1, J̃2)-
holomorphic if and only iff is (J1, J2)-holomorphic.

(2) The lift of a diffeomorphismf : (M1, J1,∇1) −→ (M2, J2,∇2) to the cotangent bundle is
(JH,∇1

1 , J
H,∇2

2 )-holomorphic if and only iff is a (J1, J2)-holomorphic map satisfyingf∗[∇̃1J1] =

[∇̃2J2].

Proof. To prove part (1), we consider almost complex and minimal connections∇1 and∇2 on M1 and
M2. HenceJ̃1 = JG,∇1 = Jc

1 + γ(S1) and J̃2 = JG,∇2 = Jc + γ(S2). We haveS1 = −1
2J1NJ1

and
S2 = −1

2J2NJ2
. We notice that iff : (M1, J1) −→ (M2, J2) is a (J1, J2)-holomorphic diffeomorphism

thenf∗NJ1
= NJ2

and thenf∗J1NJ1
= J2NJ2

. According to Theorem 3.1 the lift of a diffeomorphismf
to the cotangent bundle is(J̃1, J̃2)-holomorphic if and only iff is (J1, J2)-holomorphic.

Finally, part (2) follows from the equalityJG,∇̃ = JH,∇ obtained in Corollary 2.2 and from Theorem
3.1.

�

We point out that the projection (resp. the zero section) is(J ′, J)-holomorphic (resp(J, J ′)-holomorphic)
for J ′ = J̃ , JH,∇ due to local expressions of the complete lift and of the horizontal lift.

3.2. Fiberwise multiplication. We consider the multiplication mapZ : T ∗M −→ T ∗M by a complex
numbera+ ib with b 6= 0 on the cotangent bundle. This is locally defined byZ(x, p) = (x, (a+ btJ(x))p).

For (x, p) ∈ T ∗M we haved(x,p)Z =

(
Id 0
C aId + btJ

)
, whereCi

j = bpk∂xjJ
k
i .

Theorem 3.2. The multiplication mapZ is JG,∇-holomorphic if and only if(∇J)(J., .) = (∇J)(., J.).

Proof. Let us evaluated(x,p)Z ◦ JG,∇(x, p) − JG,∇(x, ap + btJp) ◦ d(x,p)Z . This is equal to :
(

0 0
CJ + (aId + btJ)B(x, p) − B(x, ap + tJp) − tJC 0

)
,

whereBi
j(x, p) = pk(Γ

k
l,iJ

l
j − Γk

j,lJ
l
i ).

We first notice thataBi
j(x, p) − Bi

j(x, ap + btJp) = −bpkJ
k
s (Γs

l,iJ
l
j − Γs

j,lJ
l
i ). Let us computeD =

CJ + (aId + btJ)B(x, p) − B(x, ap + tJp) − tJC :

Di
j = bpk[J

l
j∂xlJ

k
i︸ ︷︷ ︸

(1)

+ J l
iΓ

k
s,lJ

s
j︸ ︷︷ ︸

(2)

− J l
iΓ

k
j,sJ

s
l︸ ︷︷ ︸

(2)′

− Jk
s Γs

l,iJ
l
j︸ ︷︷ ︸

(3)

+ Jk
s Γs

j,lJ
l
i︸ ︷︷ ︸

(3)′

− J l
i∂xjJ

k
l︸ ︷︷ ︸

(1)′

].

We obtain(1)+(2)+(3) = J l
j(∂xlJ

k
i +Js

i Γk
l,s−Jk

s Γs
l,i) and(1)′+(2)′+(3)′ = J l

i (∂xjJ
k
l +Js

l Γk
j,s−Jk

s Γs
j,l).

We recognize the coordinates of the tensor∇J (section 1.3) :

∂xlJ
k
i − Jk

s Γs
l,i + Js

i Γk
l,s = (∇J)kl,i and∂xjJ

k
l − Jk

s Γs
j,l + Js

l Γk
j,s = (∇J)kj,l.

Finally Di
j = bpk[J

l
j(∇J)kl,i − J l

i (∇J)kj,l]. Then Z is JH,∇-holomorphic if and only ifJ l
j(∇J)kl,i =

(∇J)kj,lJ
l
i . Since(∇J)kj,lJ

l
i∂xk = (∇J)(∂xj , J∂xi) and J l

j(∇J)kl,i∂xk = (∇J)(J∂xj , ∂xi), this con-
cludes the proof of Theorem 3.2. �

In particular, the almost complex lift̃J may be characterized generically by the holomorphicity ofZ;
more precisely we have :

Corollary 3.2.

(1) The multiplication mapZ is J̃-holomorphic and,
(2) Z is JH,∇-holomorphic if and only if(∇̃J)(J., .) = (∇̃J)(., J.).
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Proof. Let us prove part (1). Assume∇ is an almost complex minimal connection onM . We have
J̃ = JG,∇ and by almost complexity of∇, ∇J is identically equal to zero. Theorem 3.2 implies the
J̃-holomorphicity ofZ.

Part (2) follows from Theorem 3.2 and from the equalityJH,∇ = JG,∇̃ stated in Corollary 2.2.
�

Remark 3.1. In the case of the tangent bundleTM , the fiberwise multiplication is holomorphic for the
complete lift ofJ if and only ifJ is integrable. More precisely, “the lack of holomorphicity” of this map is
measured by the Nijenhuis tensor (see[4]).

4. COMPATIBLE LIFTED STRUCTURES AND SYMPLECTIC FORMS

Assume(M,J) is an almost complex manifold. LetΓ = {ρ = 0} be a real smooth hypersurface ofM ,
whereρ : M → R is a defining function ofΓ.

Definition 4.1.

(1) Letx ∈ Γ. The Levi form ofΓ at x is defined byLJ
x(Γ)(X) = −d(J∗dρ)(X,JX) for anyX ∈ TxΓ.

(2) The hypersurfaceΓ = {ρ = 0} is strictly J-pseudoconvex if its Levi form is positive definite at any
pointx ∈ Γ.

Let x ∈ Γ, we defineN∗
x(Γ) := {px ∈ T ∗

x M, (px)|TxΓ = 0}. Theconormal bundleoverΓ, defined by
the disjoint unionN∗(Γ) :=

⋃
x∈Γ N∗

x(Γ), is a totally real submanifold ofT ∗M endowed with the complete

lift (see [2] and [8]), that isTN∗(Γ) ∩ J̃(TN∗(Γ)) = {0}. To look for a symplectic proof of that fact, we
search for a symplectic form,ω′, compatible with the complete lift for whichN∗(Γ) is Lagrangian, that is
ω′(X,Y ) = 0 for every sectionsX,Y of TN∗(Γ). More generally we are interested in the compatibility
with the generalized horizontal lift. Proposition 4.1 states that one cannot find such a form.

Proposition 4.1. Assume(M,J,∇) is an almost complex manifold equipped with a connection. Let ω

be a symplectic form onT ∗M compatible with the generalized horizontal liftJG,∇. There is no strictly
pseudoconvex hypersurface inM whose conormal bundle is Lagrangian with respect toω.

Proof. Let Γ be a strictly pseudoconvex hypersurface inM and letx ∈ Γ. Since the problem is purely local
we can suppose thatM = R

2m, J = Jst + O|(x1, · · · , x2m)| andx = 0. SinceΓ is strictly pseudoconvex
we can also suppose thatT0Γ = {X ∈ R

2m,X1 = 0}. The two-formω is given byω = αi,jdxi ∧ dxj +
βi,jdpi ∧ dpj + γi,jdxi ∧ dpj .

Assume thatω(X,Y ) = 0 for everyX,Y ∈ TN∗(Γ). We haveN∗
0 (Γ) = {p0 ∈ T ∗

0 R
2m, (p0)|T0Γ =

0} = {(P1, 0, · · · , 0), P1 ∈ R}. Then a vectorY ∈ T0N
∗(Γ) can be writtenY = X2∂x2 + · · · +

X2m∂x2m + P1∂p1. So we have for2 ≤ i < j ≤ 2m :

ω(0)(∂xi, ∂xj) = αi,j = 0.

Thenw′
(0) is given byω(0) = α1,jdx1 ∧ dxj + βi,jdpi ∧ dpj + γi,jdxi ∧ dpj .

SinceJ
G,∇
(0) =

(
Jst 0
0 Jst

)
we haveJ

G,∇
(0) Y ′ = ∂x2m for Y ′ = ∂x2m−1 6= 0 ∈ T0(T

∗Γ). Thus

ω(0)(Y
′, J

G,∇
(0)

Y ′) = 0 and soω is not compatible withJG,∇.

�

Proposition 4.1 is also established for complete and horizontal lifts becauseJG,∇
(0) = J̃(0) = J

H,∇
(0) .

Remark 4.1. Since the conormal bundle of a (strictly pseudoconvex) hypersurface is Lagrangian for the
symplectic formωst onT ∗M , Proposition 4.1 shows thatωst andJG,∇ are not compatible.
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