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Abstract. We construct a finitely dimensional manifold of invariant holomorphic
discs attached to a certain class of smooth pseudconvex hypersurfaces of finite type,
generalizing the notion of stationary discs. The discs we construct are determined
by a finite jet at a given boundary point and their centers fill an open set. As
a consequence, we obtain finite jet determination of CR diffeomorphisms between
smooth hypersurfaces of this class.

1. Introduction

In the celebrated paper [34], L. Lempert introduced stationary discs as holomorphic
discs attached to a given hypersurface, admitting a meromorphic lift to the cotangent
bundle with at most one pole of order one at 0, and attached to the conormal bundle.
He proved that, on a strongly convex domain, stationary discs coincide with extremal
discs for the Kobayashi metric, and constructed an analogue of the Riemann mapping
in higher dimension. Stationary discs were afterwards studied for more general classes
of submanifolds, namely, strictly pseudoconvex hypersurfaces by X. Huang [28], in
higher codimension by A. Tumanov [40], and in the almost complex setting by B.
Coupet, H. Gaussier and A. Sukhov [13].

Due to their geometric properties, stationary discs are natural invariants to study
dynamical properties of self-mappings [27, 28], mapping extension problems [35,
40], and jet determination problems [6]. Their existence relies on the study of a
nonlinear Riemann-Hilbert boundary problem, whose solvability is strongly related
to nondegeneracy properties of the given hypersurface. In such a case, its associated
conormal bundle is totally real [41], and one can construct small stationary discs
nearby a given one by developing a perturbation theory by introducing some integers
invariant under homotopy, namely the partial indices and the Maslov index (see
[22, 23, 11]). However, under no nondegeneracy conditions, it is not clear whether
or not one can ensure the existence of smooth stationary discs, and not much seems
to be known in that direction.
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Surprisingly, when one allows the unique pole of the meromorphic lift to be of
greater order, there might exist a lot of such discs, which still form a biholomorphi-
cally invariant family. Based on this observation, we define, for a given hypersurface
of finite type, the notion of k0-stationary discs, as attached holomorphic discs ad-
mitting a meromorphic lift with at most one pole of order k0 at 0. In order to
construct k0-stationary discs nearby a given one, the associated Riemann-Hilbert
problem seems to be no longer relevant since the conormal bundle of the given hy-
persurface is not anymore totally real. Instead, we introduce a nonlinear operator,
whose construction is essentially based on Toeplitz and Hankel operators, and whose
linearization involve Fredholm operators. The properties of the associated Fredholm
indices such as their invariance under homotopy, ensure the existence of nearby small
k0-stationary discs attached to perturbed hypersurface, and the number of real vari-
ables parametrizing the perturbed discs is completely determined by those indices.
Our main theorem can be stated as follows:

Theorem 1.1. Let M ⊂ C2 be a real smooth hypersurface of finite type whose
defining function is locally written as

r(z, w) = −Rew + P (z, z) +O
(
|z|d+1

)
+ Imw O

(
|z, Imw|d−1

)
,

where

P (z, z) =

k0∑
j=d−k0

αjz
jzd−j, αj = αd−j, αk0 6= 0,

d

2
≤ k0 ≤ d− 1

is a homogeneous polynomial satisfying the open condition {Pzz = 0} = {0}. Then
there exists a 4k0 − d+ 3 dimensional biholomorphically invariant Banach manifold
of small k0-stationary discs attached to M .

Similarly to [6], the discs constructed in Theorem 1.1 are particularly adapted
to study jet determination of CR-diffeomorphisms. As we know from results of
[10, 12, 37], germs of biholomorphisms preserving a real-analytic Levi nondegenerate
hypersurface M in Cn are uniquely determined by their 2-jet at p ∈ M . In C2, P.
Ebenfelt, B. Lamel and D. Zaitsev [20] proved that finite jet determination of germs
at a point p of local biholomorphisms preserving a real analytic hypersurface M holds
if and only if M is not Levi flat at p, and obtained a 2-jet determination for real-
analytic hypersurfaces of finite type (see also [2, 3, 33, 32]). In the present paper, we
consider the situation of smooth hypersurfaces of finite type in C2. We first point out
that the finite jet determination of smooth CR mappings of smooth CR submanifolds
of finite type has been considered in [18, 31] (see also [19]). Their approach is based
on the method of complete differential systems, introduced by C.K. Han [24, 25],
and the order of the jet determination obtained in [31] is independent of the type.
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However, the assumption of finite nondegeneracy, as well as the (C∞) smoothness of
both the mapping and the submanifold, seem to be essential for their method to work.
Recently, the first co-author and L. Blanc-Centi [6] obtained a 2-jet determination for
merely C4 Levi nondegenerate hypersurfaces in Cn by considering invariance - under
one-sided biholomorphisms - and geometric properties of stationary discs attached
to such hypersurfaces. Following this approach, we obtain:

Theorem 1.2. Let M ⊂ C2 be a real Cd/2+k0+5 pseudoconvex hypersurface of finite
type whose defining function is locally written as in Theorem 1.1. Then the germs at
p = 0 ∈ M of CR-diffeomorphisms H of class Cd/2+k0+3 such that H(M) = M are
uniquely determined by their k0 − d/2 + 2-jet at p.

Notice that when the essential type of M is exactly half of the type, namely when
P (z, z̄) = |z|d, we obtain the 2-jet determination of germs of CR-diffeomorphisms at
0. It is worth emphasizing that the fact that we can treat CR-diffeomorphisms as
opposed to just biholomorphisms is due to the method of stationary discs together
with the one-sided holomorphic extendability of CR-diffeomorphisms [4, 39, 38]. In
principle, one might expect a higher jet determination for CR-diffeomorphisms than
for biholomorphisms, although they coincide in the real-analytic case [30, 16, 17].
Thus, the question whether or not the order of the jet determination we obtain in
Theorem 1.2 is optimal, seems to be linked with the possible existence of one-sided
biholomorphisms that do not extend across the hypersurface M .

Since any biholomorhisms between two smooth bounded pseudoconvex domains of
finite type extends up to the boundary [5, 15], one can apply Theorem 1.2 in order
to obtain a boundary version of H. Cartan’s uniqueness theorem.

Theorem 1.3. Let D, D′ ⊂ C2 be two smooth bounded pseudoconvex domains of
finite type. Assume that bD admits a local defining function centered at p ∈ bD
written as in Theorem 1.1. If H1 and H2 are two biholomorhisms from D onto D′

with the same (k0 − d/2 + 2)-jet at p, they coincide.

The paper is organized as follows. In Section 2, we discuss the properties of the
Banach spaces of functions and operators that we will need, and we define the notion
of k0-stationary discs. Section 3 is devoted to the construction of k0-stationary discs
In Section 4, we study the geometric properties of k0-stationary discs. Finally, we
prove Theorem 1.2 and other finite jet determination results in Section 5.

2. Preliminaries

We denote by ∆ the unit disc in C. We denote by (z, w) the standard coordinates
in C2.
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2.1. Spaces of functions. Let k be an integer and let 0 < α < 1. We denote by
Ck,α = Ck,α(b∆,R) the space of real-valued functions defined on b∆ of class Ck,α. The
space Ck,α is endowed with its usual norm

‖f‖Ck,α =
k∑
j=0

‖f (j)‖∞ + sup
ζ 6=η∈b∆

‖f (k)(ζ)− f (k)(η)‖
|ζ − η|α

,

where ‖f (j)‖∞ = max
∂∆
‖f (j)‖. We set Ck,αC = Ck,α + iCk,α. Hence f ∈ Ck,αC if and only

if Re f, Im f ∈ Ck,α. The space Ck,αC is equipped with the norm

‖f‖Ck,αC
= ‖Re f‖Ck,α + ‖Im f‖Ck,α

We denote by Ak,α the subspace of Ck,αC consisting of functions f : ∆ → C, holo-

morphic on ∆ with trace on b∆ belonging to Ck,αC . We define (1 − ζ)Ak,α to be the

subspace of Ck,αC of functions f that can be written as f = (1− ζ)f̃ , with f̃ ∈ Ak,α.
We equip (1− ζ)Ak,α with the following norm

‖(1− ζ)f̃‖(1−ζ)Ak,α = ‖f̃‖Ck,αC
.

Hence (1 − ζ)Ak,α is a Banach space. Notice that the inclusion of (1 − ζ)Ak,α
into Ak,α is a bounded linear operator. We also point out that the linear operator
L : Ak,α → (1− ζ)Ak,α, defined by

L(f̃) = (1− ζ)f̃

is an isometry.
Finally, we denote by Ck,α0 the subspace of Ck,α consisting of elements that can be

written as (1− ζ)v with v ∈ Ck,αC . We equip Ck,α0 with the norm

‖(1− ζ)v‖Ck,α0
= ‖v‖Ck,αC

.

Notice that Ck,α0 is a Banach space.

2.2. Pseudoconvex hypersurfaces of finite type. In this section, we recall some
facts about pseudoconvex hypersurface of finite type in C2. Let M = {r = 0} be a
smooth pseudoconvex hypersurface defined in a neighborhood of the origin C2.

Definition 2.1. Let f : (∆, 0)→ (C2, 0) be a holomorphic disc satisfying f (0) = 0.
The order of contact δ0 (M, f) with M at the origin is the degree of the first term in
the Taylor expansion of r ◦ f . We denote by δ (f) the multiplicity of f at the origin.

We now define the D’Angelo type and the regular type of the real hypersurface M
at the origin.
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Definition 2.2.

i) The D’Angelo type of M at the origin is defined by:

∆1 (M, 0) := sup

{
δ0 (M, f)

δ (f)
, f : (∆, 0)→ (C2, 0), holomorphic

}
.

The point 0 is a point of finite D’Angelo type d if ∆1 (M, 0) = d < +∞.
ii) The regular type of M at origin is defined by:

∆1
reg (M, 0) := sup

{
δ0 (M, f) , f : (∆, 0)→ (C2, 0), holomorphic, d0u 6= 0

}
.

The type condition as defined in part 1 of Definition 2.2 was introduced by J.-P.
D’Angelo [14] who proved that this coincides with the regular type in complex man-
ifolds of dimension two. Following [9] and [21], a smooth pseudoconvex hypersurface
M of finite type d can be locally written as M = {r = 0} with

r(z, w) = −Rew + P (z, z) +O
(
|z|d+1 + |Imw||z|

d
2

+1 + |Imw|2
)
,

where P is a subharmonic homogeneous polynomial of degree d, not identically zero,
with no harmonic terms. Notice then that d is necessarily even. In this paper, we
will restrict our attention smooth pseudoconvex hypersurfaces M = {r = 0} of finite
type d, where

r(z, w) = −Rew + P (z, z) + θ1(Imw) +O
(
|z|d+1

)
+ Imw O

(
|z, Imw|d−1

)
,

such that {Pzz = 0} = {0} and where θ1(Imw) = O(|Imw|2). Furthermore, up to
another change of coordinates, one can assume

r(z, w) = −Rew + P (z, z) +O
(
|z|d+1

)
+ Imw O

(
|z, Imw|d−1

)
,

Notice that the set of points in M of type greater than two is contained in M∩{z =
0}. Given a polynomial P satisfying the above conditions, the following hypersurface
will be called a model hypersurface, S = {ρ = 0} with

ρ(z, w) = −Rew + P (z, z).

To fix some notations, we write

P (z, z) =

k0∑
j=d−k0

αjz
jzd−j, αj = αd−j, αk0 6= 0.

where d/2 ≤ k0 ≤ d − 1. The integer d − k0 is the essential type of the model
hypersurface.
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2.3. k0-stationary discs. Let M = {r = 0} be a smooth pseudoconvex hypersur-
face defined in a neighborhood of the origin in C2. Let k be an integer and let
0 < α < 1. A holomorphic disc f ∈ (Ak,α)2 is attached to M if f(b∆) ⊂M .

Definition 2.3. A holomorphic disc f ∈ (Ak,α)2 attached to M = {r = 0} is
k0-stationary if there exists a continuous function c : b∆ → R∗ such that the map
ζk0c(ζ)∂r(f(ζ)), defined on b∆, extends as a map in (Ak,α)2. The map (c, f) is called
a lift of f .

We first prove that such a set of holomorphic discs is invariant under biholomor-
phisms.

Proposition 2.4. Let M ⊂ C2 be a smooth pseudoconvex real hypersurface of finite
type containing 0. Let H be a biholomorphism in C2 sending M to a real hypersurface
M ′. If f : ∆ → C2 is a k0-stationary disc attached to M then the disc H ◦ f is a
k0-stationary disc attached to M ′. More precisely, if (c, f) is a lift of f attached to
M then (c,H ◦ f) is a lift of H ◦ f attached to M ′.

Proof. Let f : ∆ → C2 be a k0-stationary disc attached to M = {r = 0}. and let
c : b∆ → R∗ be such that ζk0c(ζ)∂r(f(ζ)) extends as a map in (Ak,α)2. Since H
sends M to M ′, the function r ◦H−1 is a (local) defining function for M ′. It follows
that ζk0c(ζ)∂(r ◦H−1)(H ◦ f(ζ)) = ζk0c(ζ)∂r(f(ζ))(∂H(f(ζ))−1 extends as well as a
(Ak,α)2 map. �

Remark 2.5. More generally, small enough k0-stationary discs are invariant under
CR-diffeomorphisms. Indeed, a CR-diffeomorphism H of class Ck+1 admits a local

holomorphic extension H̃ to a one-sided neighborhood U of 0, which is of class Ck+1

up to U (see Theorem 7.5.1 in [1]), and any small stationary disc f ∈ (Ak,α)2 is

contained in U . This allows to define the composition H̃ ◦ f ∈ (Ak,α)2, and the
previous proof applies.

We denote by Sk0,r the set of lifts of k0-stationary discs attached to M = {r = 0}.
Moreover, assume that the local definition function of M = {r = 0}. We denote by

Sk0,r0 , or simply Sr0 , the elements (c, f) ∈ Sk0,r satisfying f(1) = 0. In such a case,
we say that the lift (c, f) is tied to the origin.

Example 2.6. Consider a model hypersurface S = {ρ = 0} with

ρ(z, w) = −Rew + P (z, z) = −Rew +

k0∑
j=d−k0

αjz
jzd−j.

We have 
∂ρ
∂w

(z, w) = −1
2

∂ρ
∂z

(z, w) = Pz(z, z) =
∑k0

j=d−k0 jαjz
j−1zd−j.
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We restrict to coefficient functions of the form c(ζ) =
(
bζ + 1 + bζ

)k0
where b ∈ C

is such that |b| < 1/2. Set c′(ζ) = bζ + 1 + bζ. It follows that ζc′, and thus −1
2
ζk0c,

extend holomorphically to the unit disc. Following the arguments in [6], we set

h(ζ) =
1− ζ

1− a(b)ζ
v,

with a =
−1+
√

1−4|b|2
2b

and v ∈ C∗, which implies that ζc′h ∈ Ak,α. Then

ζk0c(ζ)Pz(h(ζ), h(ζ)) =

k0∑
j=d−k0

jαj(ζc
′(ζ))k0−d+jh(ζ)j−1(ζc′(ζ)h(ζ))d−j.

Since k0 − d + j ≥ 0 and d − j ≥ 0 for d − k0 ≤ j ≤ k0, every term in the sum on
the right hand side belongs to Ak,α. Hence ζk0cPz(h, h) ∈ Ak,α. Imposing the further
condition g(1) = 0, one can find, by standard results about the Hilbert transform,
a map g such that f = (h, g) is a k0-stationary disc attached to S and tied to the
origin.

In particular, if b = 0 and v = 1, it follows that c0 is identically equal to 1 and
that h0(ζ) = 1− ζ. Denote by f0 = (h0, g0) the corresponding stationary disc.

The disc f0 we have given in Example 2.6 is essential in our approach in order
to obtain a family of k0-stationary discs by deformation of both f0 and the model
hypersurface.

2.4. Regularity and Fredholmness of integral operators on b∆. We denote
by H2(b∆) the classical Hardy space on the unit circle and by P ′ : L2(b∆)→ H2(b∆)

the Szegö projection. The Szegö projection defines a linear operator P ′ : Ck,αC → Ak,α.
Denoting by T the Hilbert transform, one can deduce by [1] (6.1.37) the following
relation

(2.1) −2iP ′ = T − iId− iC0,

where C0u =
∫ 2π

0
u(eiθ)dθ. Due to Privalov’s Theorem, the Hilbert transform is a

well-behaved operator (see [1], Corollary 6.1.31):

Theorem 2.7. Let k ≥ 0 be an integer and let 0 < α < 1 be a real number. The
Hilbert transform T : Ck,α → Ck,α is a bounded linear operator.

Hence, it follows from (2.1) that the Szegö projection P ′ : Ck,αC → Ak,α is a bounded
linear operator. Out of convenience, however, we will mainly consider the analogous

bounded projection P : Ck,αC → ζAk,α defined by

(2.2) P(u) = ζP ′
(
ζu
)

= u− P ′(u).
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The space ζAk,α is endowed with the induced norm of Ck,αC . Notice that a function u
extends as a function in Ak,α if and only if P(u) = 0. More precisely, if u = u′ + u′′

with u′ =
∑

n≥0 unζ
n and u′′ = P(u) =

∑
n<0 unζ

n then P(u) = u′′.
Recall that when ϕ is a complex valued continuous function defined on b∆ that

does not vanish, then the Toeplitz operator with symbol ϕ defined by Tϕ = P ′(ϕ.) :
H2(b∆)→ H2(b∆) is a Fredholm operator, that is with finite dimensional kernel and
cokernel. Moreover, it index, namely dimC kerTϕ−dimC cokerTϕ , is the opposite of

the winding number − 1
2πi

∫
b∆

dϕ
ϕ

of ϕ. It follows then that for such a ϕ, the operator

P(ϕ.) : H
2
(b∆) → ζH

2
(b∆) is also Fredholm of index − 1

2πi

∫
b∆

dζϕ

ζϕ
. Note that,

although the operator P(ϕ.) is defined in a similar way than the Hankel operator

P(ϕ.) : H2(b∆) → ζH
2
(b∆), they do not agree since their source spaces differ. In

this paper, we need to consider the operator P(ϕ.) restricted to Ak,α ⊂ H
2
(b∆).

Although it is not clear whether or not P(ϕ.) is Fredholm in that case, for a very
special class of functions ϕ, we have the following:

Lemma 2.8. Let ϕ ∈ Ck,α be a holomorphic polynomial whose zeros are contained

in the unit disc ∆. Then the operator P(ϕ.) : Ak,α → ζAk,α is Fredholm of index
the opposite of the winding number of ζϕ. More precisely, P(ϕ.) is surjective and its

kernel has complex dimension − 1
2πi

∫
b∆

dζϕ

ζϕ
.

Proof. First note that since Ak,α ⊂ H
2
(b∆), the kernel of P(ϕ.) : Ak,α → ζAk,α is

included in the one of P(ϕ.) : H
2
(b∆)→ ζH

2
(b∆) and hence is finitely dimensional.

Write

ϕ(ζ) = C
∏

1≤j≤`

(qj − ζ) =
C

ζ
`
ϕ2(ζ),

where ϕ2(ζ) =
∏

1≤j≤`(ζqj − 1). Then ϕ2 extends antiholomorphically to the unit

disc and the extension is nowhere vanishing on ∆. It follows that both ϕ2 and its

inverse belong to Ak,α. Now, for any v ∈ ζAk,α define

u(ζ) =
ζ
`

C

v(ζ)

ϕ2(ζ)
∈ Ak,α.

Since v ∈ ζAk,α, we have P(ϕu) = v, which proves the surjectiviy of P(ϕ.). Thus
P(ϕ.) is a Fredholm operator and its index is equal to dimC kerP(ϕ.).

In order to compute its Fredholm index, we need the following observation. The
boundedness of the operator P implies that the map ϕ 7→ P(ϕ.) is continuous. Due
to the local constancy of the index of a Fredholm operator (see Theorem 5.2 p.
42 [7]), it follows that if ϕ and ϕ′ are two homotopically equivalent holomorphic
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polynomials whose zeros are contained in the unit disc ∆, then P(ϕ.) and P(ϕ.)
have the same index. And since any such function ϕ : b∆ → C∗ is homotopically
equivalent to some ζm, for some integer m ≥ 0, it is enough to compute the index

of the Fredholm operator P(ζm.). We write the Fourier expansion of u ∈ Ak,α as
u(ζ) =

∑
n<0 unζ

n. Thus

P(ζmu) =
∑
n<−m

unζ
m+n = 0

if and only if un = 0 whenever n < −m. This implies that dimC kerP(ζm.) =
m+ 1. �

Finally, we will need the following two lemmas.

Lemma 2.9. Let k0 ≥ 1 be an integer and let c : b∆→ R∗ be a continuous function.
Then P(ζk0c) = 0 if and only if

(2.3) c(ζ) = ck0ζ
−k0 + ck0−1ζ

−(k0−1) + . . .+ c0 + . . .+ ck0−1ζ
k0−1 + ck0ζ

k0 ,

where c0 ∈ R and c1, . . . , ck0 ∈ C.

Proof. We write the Fourier expansion of c : b∆ → R∗ as c(ζ) =
∑

n∈Z cnζ
n, where

cn ∈ C and cn = c−n for all n ∈ Z. Since the Fourier expansion of ζk0c is given by∑
n∈Z cnζ

n+k0 , in order for it to belong to Ak,α we must have cn = 0 for all n < −k0,
from which follows (2.3). Conversely, the fact that such a c satisfies P (ζk0c) = 0 is
immediate. �

Lemma 2.10. Let u ∈ Ck,αC and let ` ∈ Z. Then P
(
(1− ζ)`u

)
= 0 if and only if

Pu = 0.

Proof. By induction it is sufficient to show that P((1−ζ)u) = 0 if and only if Pu = 0.
Let u(ζ) =

∑
n∈Z cnζ

n be the Fourier expansion of u, and write u = u′ + u′′ with
u′ =

∑
n≥0 unζ

n and u′′ = P(u) =
∑

n<0 unζ
n. It is clear that (1 − ζ)u′ always

extends holomorphically, hence we must show that P((1 − ζ)u′′) = 0 if and only if
u′′ = 0. Now, we have (1− ζ)u′′ =

∑
n≤0 vnζ

n, where v0 = u−1

vn = un − un−1, n ≤ −1.

If P((1−ζ)u′′) = 0, we must have vn = 0 for all n ≤ −1, which implies that un = un−1

for all n ≤ −1. Since u′′ ∈ Ck,αC , this is only possible if u′′ = 0. �
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3. Construction of k0-stationary discs

Consider a model hypersurface S = {ρ = 0} of type d

ρ(z, w) = −Rew + P (z, z) = −Rew +

k0∑
j=d−k0

αjz
jzd−j.

Recall that in view of Example 2.6, we consider the k0-stationary disc attached to S
given by f0 = (h0, g0) = (1− ζ, g0), with the coefficient function c0 ≡ 1. We fix δ > 0
such that f0(∆) ⊂ (δ∆)2. The aim of this section is to construct a finite dimensional
manifold of lifts of k0-stationary discs attached to small perturbations of the given
model hypersurface.

Let k > 0 be an integer and let 0 < α < 1. We denote by X the (affine) Banach
space parametrizing the deformations of the model S that we will consider, defined

as the set of functions r ∈ Ck+3
(
δ∆

2
)

which can be written as

(3.1) r(z, w) = ρ(z, w) + θ(z, Imw),

with

θ(z, Imw) =
∑

i+j=d+1

(zizj) · rij0(z) +
d∑
l=1

∑
i+j=d−l

zizj(Imw)l · rijl(z, Imw)

where rij0 ∈ Ck+3
C
(
δ∆
)
, rijl ∈ Ck+3

C
(
δ∆× [−δ, δ]

)
. Furthermore, we will consider the

norm
‖r‖X = sup ‖rijl‖Ck+3 ,

so that X is isomorphic to a (real) closed subspace of Ck+3
C
(
δ∆× [−δ, δ]

)
, hence it

is a Banach space. The inclusion of X into Ck+3
(
δ∆× [−δ, δ]

)
is an (affine) linear

bounded map, and in particular it is of class C1. We define the set

Y = Ck,α × (1− ζ)Ak,α × (1− ζ)Ak,α,
and we equip it with the following norm

‖(c, h, g)‖Y = ‖c‖Ck,α + ‖h‖(1−ζ)Ak,α + ‖g‖(1−ζ)Ak,α .

Theorem 1.1 is a consequence of the following more precise result:

Theorem 3.1. Let S = {ρ = 0} be a model hypersurface of finite type d. Then for
any integer k ≥ 0 and 0 < α < 1, there exist some open neighborhoods V of ρ in X
and U of 0 in R4k0−d+3, η > 0, and a map F : V × U → Y of class C1, such that:

i) F(ρ, 0) = (1, f0),
ii) for all r ∈ V , the map F(r, ·) : U → {(c, f) ∈ Y | (c, f) ∈ Sr0 , ‖(c, f) −

(1, f0)‖Y < η} is one-to-one and onto.
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In order to prove Theorem 3.1, we need to consider the zero set of the map T =
(T1, T2, T3)

T : X × Y → (ζAk,α)2 × Ck,α0 ,

defined by 
T1(r, c, h, g) = P

(
ζk0c∂r

∂z
(h, g)

)
T2(r, c, h, g) = P

(
ζk0c ∂r

∂w
(h, g)

)
T3(r, c, h, g) = r(h, g)

in a neighborhood of (ρ, c0, h0, g0). For any fixed r ∈ X, the zero set of T (r, ·) is the
set Sr0 of k0-stationary discs attached to {r = 0} and tied to the origin.

Although the map T is of class C1, its derivative with respect to Y is, in general,
not surjective. Our aim is then to replace it with another map T ′ having the same
zero set as T and whose derivative with respect to Y is surjective, hence allowing
the application of the implicit function theorem.

We first define a polynomial Q in such a way that

ζk0Pzz(1− ζ, 1− ζ) = (ζ − 1)d−2Q(ζ)

for all ζ ∈ b∆. The polynomial Q can be explicitly computed:

ζk0Pzz(1− ζ, 1− ζ) =
∑k0

j=(d−k0) γj(1− ζ)j−1ζk0(1− ζ)d−j−1

= (ζ − 1)d−2
∑k0

j=d−k0(−1)j−1γjζ
k0+j+1−d

= (ζ − 1)d−2Q(ζ)

where γj = j(d − j)αj. The assumption made on P implies that Q does not have
any roots on the unit circle b∆; also note that Q has always one root of multiplicity
one at the origin. Denote by qj, 1 ≤ j ≤ 2k0 + 1 − d, the roots of Q, and suppose
that q1, . . . , qi0 are the ones lying outside of ∆ and q2k0+1−d = 0. We set s(ζ) =∏

1≤j≤i0(qj − ζ), t(ζ) =
∏

i0+1≤j≤2k0−d(qj − ζ), and write

Q(ζ) = Cζs(ζ)t(ζ)

for some constant C ∈ C. Put `0 = 2k0 − i0 − d, so that Q(ζ) admits exactly `0 + 1
roots inside the unit disc and i0 roots outside.

Lemma 3.2. We have `0 = i0 = k0 − d/2.
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Proof. For the given k0 ∈ N, consider the set Pk0,d of the real polynomials P ′(z, z)
such that

P ′(z, z) =

k0∑
j=d−k0

α′jz
jzd−j, α′j = α′d−j

and such that P ′zz vanishes exactly at 0 and is positive elsewhere. For each P ′ ∈ Pk0,d,
denote by QP ′ the polynomial defined above. The computation performed before the
lemma shows that the coefficients of QP ′ depend continuously on those of P ′, and
that QP ′ never vanishes on the unit circle. Thus, the argument principle implies that
the number of zeroes of QP ′ lying inside the unit disc is constant on any connected
component of Pk0,d. On the other hand, it is easy to check that Pk0,d is a convex cone
in the space of the real polynomials of degree d, hence it is connected.

Choosing now P ′(z, z) = |z|d, we obtain QP ′(ζ) = (−1)
d
2
−1 d2

4
ζk0+1− d

2 , which van-
ishes at z = 0 with multiplicity k0 + 1 − d/2. It follows that the polynomial P
also admits exactly k0 + 1− d/2 zeroes inside the unit disc, hence `0 = k0 − d/2 as
claimed. �

We now define the map T ′ = (T ′1, T
′
2, T

′
3) by putting T ′2 = T2, T ′3 = T3 and

T ′1(r, c, h, g) = P
(

ζk0

(1− ζ)d−1s(ζ)
· c∂r
∂z

(h, g)

)
.

The map T ′1 is well-defined because the choice of the space X implies ∂r
∂z

(h, g) ∈
(1− ζ)d−1Ck,αC for all r ∈ X and h, g ∈ (1− ζ)Ak,α. The fact that the zero set of T ′1
is the same as the one of T1 follows from Lemma 2.10 and from the fact that both
s(ζ) =

∏
1≤j≤i0(qj−ζ) and its inverse extend holomorphically to the unit disc, which

implies that s · u ∈ Ak,α if and only if u ∈ Ak,α.

Lemma 3.3. The map T ′ is of class C1.

Proof. Since P : Ck,αC → ζAk,α is a bounded linear operator, it is enough to show
that the following map

T̃ ′ = (T̃ ′1, T̃
′
2, T

′
3) : X × Y → (Ck,αC )2 × Ck,α0 ,

defined by 
T̃ ′1(r, c, h, g) = ζk0

(1−ζ)d−1s(ζ)
· c∂r

∂z
(h, g)

T̃ ′2(r, c, h, g) = ζk0c ∂r
∂w

(h, g)

T ′3(r, c, h, g) = r(h, g)

is of class C1.
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According to Lemma 5.1 in [26], the map T̃ ′2 is of class C1 when considered as
a map from X × Ck,α × Ak,α × Ak,α. Then it follows from the boundedness of the
inclusion of (1− ζ)Ak,α into Ak,α noticed in Subsection 2.1 that T̃ ′2 : X × Y → Ck,αC
is of class C1.

To treat the smoothness of T̃ ′1, we define, for every i, j such that i + j = d + 1,

maps Sij0, Uij0 : X → Ck+2
C (δ∆

2
) of class C1 in the following way:

(Sij0(r))(z, z′) = izi−1zj · rij0(z′),

(Uij0(r))(z, z′) = zizj · ∂rij0
∂z

(z′).

We also define, for every i, j and 1 ≤ l ≤ d satisfying i + j + l = d, maps Sijl, Uijl :

X → Ck+2
C (δ∆

3 × [−δ, δ]) of class C1 by:

(Sijl(r))(z, w, z
′, Imw′) = izi−1zj

(
w + ζw

)l · rijl(z′, Imw′),

(Vijl(r))(z, w, z
′, Imw′) = zizj

(
w + ζw

)l · ∂rijl
∂z

(z′, Imw′).

Posing h = (1− ζ)h̃, g = (1− ζ)g̃, a straightforward computation gives

T̃ ′1(r, c, h, g) = ζk0

s(ζ)
cPz

(
h̃,−ζh̃

)
+ ζk0 (1−ζ)

s(ζ)
c
∑

i+j=d+1
1

(−ζ)j (Sij0(r))(h̃, h)

+ ζk0 (1−ζ)2
s(ζ)

c
∑

i+j=d+1
1

(−ζ)j (Uij0(r))(h̃, h)

+ ζk0

s(ζ)
c
∑d−1

l=1

∑
i+j=d−l

1
(−ζ)j (Sijl(r))(h̃, g̃, h, Im g)

+ ζk0 (1−ζ)
s(ζ)

c
∑d−1

l=1

∑
i+j=d−l

1
(−ζ)j (Uijl(r))(h̃, g̃, h, Im g)

Since, again by Lemma 5.1 in [26] and the discussions made in Subsection 2.1, the

maps X × (1 − ζ)Ak,α × (1 − ζ)Ak,α → Ck,αC defined as (r, h, g) 7→ (Sij0(r))(h̃, h),

(r, h, g) 7→ (Uij0(r))(h̃, h), (r, h, g) 7→ (Sijl(r))(h̃, g̃, h, Im g), (r, h, g) 7→ (Uijl(r))(h̃, g̃, h, Im g)
are of class C1, it follows that T ′1 is in turn of class C1.

The proof that T ′3 : X ×Y → Ck,α0 is of class C1 is analogous to (but simpler than)
the proof for T̃ ′1, hence we shall omit it. �

We then show the following:

Lemma 3.4. The Banach space derivative T ′Y is surjective at the point p0 = (ρ, c0, h0, g0).

Proof. Choosing any (c′, h′, g′) ∈ Y , for any p = (r, c, h, g) we can write

T ′Y (p)[c′, h′, g′] = ((T ′1)Y (p)[c′, h′, g′], (T ′2)Y (p)[c′, h′, g′], (T ′3)Y (p)[c′, h′, g′]) ,

where



14 FLORIAN BERTRAND AND GIUSEPPE DELLA SALA



(T ′1)Y (p)[c′, h′, g′] = P
(

ζk0

s(ζ)(1−ζ)d−1 ·
(
c′ ∂r
∂z

(h, g) + ch′ ∂
2r
∂z2

(h, g) + ch
′ ∂2r
∂z∂z

(h, g)
))

+P
(

ζk0

s(ζ)(1−ζ)d−1 ·
(
cg′ ∂

2r
∂z∂w

(h, g) + cg′ ∂
2r

∂z∂w
(h, g)

))
,

(T ′2)Y (p)[c′, h′, g′] = P
(
ζk0 ·

(
c′ ∂r
∂w

(h, g) + ch′ ∂
2r

∂w∂z
(h, g) + ch

′ ∂2r
∂w∂z

(h, g)
))

+P
(
ζk0 ·

(
cg′ ∂

2r
∂w2 (h, g) + cg′ ∂

2r
∂w∂w

(h, g)
))

,

(T ′3)Y (p)[c′, h′, g′] = g′ ∂r
∂w

(h, g) + g′ ∂r
∂w

(h, g) + h′ ∂r
∂z

(h, g) + h
′ ∂r
∂z

(h, g).

At p0 = (ρ, c0, h0, g0) this becomes

(T ′1)Y (p0)[c′, h′, g′] = P
(

ζk0

s(ζ)(1−ζ)d−1 ·
(
Pz2(1− ζ, 1− ζ)h′ + Pzz(1− ζ, 1− ζ)h

′
))

+P
(

ζk0

s(ζ)(1−ζ)d−1Pz(1− ζ, 1− ζ)c′
)
,

(T ′2)Y (p0)[c′, h′, g′] = P
(
− ζk0

2
c′
)
,

(T ′3)Y (p0)[c′, h′, g′] = −g′

2
− g′

2
+ Pz(1− ζ, 1− ζ)h′ + Pz(1− ζ, 1− ζ)h

′
.

Because of the triangular form of the previous expressions we see that it is sufficient

to show that the derivative of T ′2 in the direction of c′ is surjective (onto ζAk,α) and
that the same is true for the derivatives of T ′1 in the h′ direction and of T ′3 in the g′

direction.
We first focus on T ′2 = T2, i.e. we consider the map Ck,α 3 c′ 7→ P(−ζk0c′/2) ∈

ζAk,α. If c′(ζ) =
∑

n∈Z c
′
nζ

n with c′n = c′−n, we have

P(−ζk0c′/2) = −1

2

∑
n<0

c′n−k0ζ
n.

Since the indices n− k0 are all negative, this map is clearly onto.
We turn now to T ′1. The derivative of T ′1 in the h′ direction consists of two sum-

mands: computing the first one we obtain, setting h′ = (1− ζ)h′′ with h′′ ∈ Ak,α and
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βj = j(j − 1)αj, and taking in account that ζ = 1/ζ,

ζk0h′(ζ)
s(ζ)(1−ζ)d−1Pz2(1− ζ, 1− ζ) = h′′(ζ)

s(ζ)(1−ζ)d−2

∑k0
j=d−k0 βj(1− ζ)j−2ζk0(1− ζ)d−j

= h′′(ζ)
s(ζ)(1−ζ)d−2

∑k0
j=d−k0 βj(1− ζ)j−2ζk0+j−d(ζ − 1)d−j

= h′′(ζ)
s(ζ)

∑k0
j=d−k0(−1)d−jβjζ

k0+j−d.

Since in the sum the exponents k0+j−d are always non-negative, this term belongs to
Ak,α for any h′′ ∈ Ak,α, hence its projection vanishes. On the other hand, computing
the second summand we get

h′(ζ)
s(ζ)(1−ζ)d−1 ζ

k0Pzz(1− ζ, 1− ζ) = − h′′(ζ)
ζs(ζ)(1−ζ)d−2 (ζ − 1)d−2Q(ζ)

= (−1)dCh′′(ζ)t(ζ)

Since t(ζ) is a holomorphic polynomial whose zeros are contained in the unit disc ∆,
Lemma 2.8 implies that the map (T ′1)Y is surjective at p0 in the direction of h′.

Finally we have to consider the derivative of T ′3 in the g′ direction. Proving its

surjectivity amounts to show that for any v ∈ Ck,α0 there exists g′ ∈ (1 − ζ)Ak,α
such that 2Re g′ = v. Thus Re g′ is the harmonic extension of v/2 to the unit
disc and Im g′ is uniquely determined as the harmonic conjugate of v/2 such that
Im g′(1) = 0. It follows that g′(1) = 0, i.e. g′ = (1 − ζ)g′′ for some holomorphic
function g′′ continuous up to ∆ (in fact g′′ is at least in Ak−1 since g′ ∈ Ak,α). We

want to show that g′′ ∈ Ak,α. By definition of Ck,α0 , we have v = (1 − ζ)v′ for some

v′ ∈ Ck,αC . We can write for ζ ∈ b∆

(1− ζ)g′′(ζ) + (1− ζ)g′′(ζ) = (1− ζ)v′(ζ)

and since (1− ζ) = −ζ(1− ζ) for ζ ∈ b∆,

g′′(ζ)− ζg′′(ζ) = v′(ζ).

Applying the Szego projection P ′ : Ck,αC → Ak,α to both sides, we conclude that
g′′ = P ′(v′) ∈ Ak,α. By the discussion above, this finishes the proof of the surjectivity
of T ′Y at p0 = (ρ, c0, h0, g0). �

Now, we show that the kernel of T ′Y at p0 = (ρ, c0, h0, g0) is finite dimensional:

Lemma 3.5. The kernel of T ′Y (p0) has real dimension 2(k0 + `0) + 3 = 4k0 − d+ 3.

Proof. We will revisit the computations performed in Lemma 3.4, and start solving

(T ′2)Y (p0)[c′, h′, g′] = P
(
− ζk0

2
c′
)

= 0. According to Lemma 2.9, c′ must be of the
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form (2.3). Thus the projection of kerT ′Y (p0) to the factor Ck,α has real dimension
2k0 + 1.

Next, looking at the expression of (T ′1)Y (p0), and taking in account that, as proved

in Lemma 3.4, ζk0h′(ζ)
s(ζ)(1−ζ)d−1Pz2(1 − ζ, 1 − ζ) ∈ Ak,α for any h′ ∈ (1 − ζ)Ak,α, we see

that for any given c′ of the form (2.3), we need to solve for h′ the equation

(3.2) P

(
h′(ζ)

s(ζ)(1− ζ)d−1
ζk0Pzz(1− ζ, 1− ζ)

)
= v

where

v = −P
(

ζk0

s(ζ)(1− ζ)d−1
Pz(1− ζ, 1− ζ)c′

)
∈ Ak,α.

Since any two solutions of (3.2) differ by a solution of its homogenized version (i.e.
with v = 0), it is of course enough to consider the latter. In view of the computations
in Lemma 3.4, this amounts to solving

(3.3) P
(
t(ζ)h′′(ζ)

)
= 0

for h′′ ∈ Ak,α. According to Lemma 2.8, the kernel of P(t.) has complex dimension
`0 + 1. Thus the (affine) space of solutions of (3.2) has real dimension 2(`0 + 1), and
in turn that the projection of kerT ′Y (p0) to the factor Ck,α × (1 − ζ)Ak,α has real
dimension 2k0 + 2`0 + 3.

Finally, considering (T ′3)Y , given any h′ which satisfies (3.2) we must solve for
g′ ∈ (1− ζ)Ak,α the equation

g′

2
+
g′

2
= Pz(1− ζ, 1− ζ)h′ + Pz(1− ζ, 1− ζ)h

′
.

The same proof as in Lemma 3.4, however, shows that the previous equation admits
a unique solution g′. By the previous arguments, we conclude that the kernel of
T ′Y (p0) has real dimension 2(k0 + `0) + 3. �

We have proved that the derivative at the point p0 = (ρ, c0, h0, g0) of T ′Y (p0) :

Y → (Ck,αC )2 × Ck,α0 is surjective and that its kernel kerT ′Y (p0) has real dimension
4k0 − d + 3. In particular, the Banach space Y can be decomposed as a direct sum
Y = kerT ′Y (p0) ⊕ W , where W is isomorphic to (Ck,αC )2 × Ck,α0 . According to the
implicit function theorem, there exist open neighborhoods V of ρ in X, U of 0 in
kerT ′Y (p0) ' R4k0−d+3, and U ′ of (c0, f0) in W , and a map v : V ×U → U ′, such that
T ′(r, t⊕w) = 0 if and only if w = v(r, t). It follows that the C1 map F : V ×U → Y
defined by F(r, t) = t⊕ v(r, t) satisfies the properties of Theorem 3.1.
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4. Properties of k0-stationary discs

Let S = {ρ = 0} be a model hypersurface of type d

ρ(z, w) = −Rew + P (z, z) = −Rew +

k0∑
j=d−k0

αjz
jzd−j.

Let k be an integer and let 0 < α < 1. Fix a k0-stationary disc f0(ζ) = (1 − ζ, g0)
with c0 ≡ 1. For η > 0, we denote by Sr0,η the set

Sr0,η = {(c, f) = (c, h, g) ∈ Y | (c, f) ∈ Sr0 , ‖(c, f)− (1, f0)‖Y < η}.

Let U , V , η > 0, and F : U × V → Sr0,η given by Theorem 3.1. We write

F(r, t) = (cr,t, hr,t, gr,t).

Define a map Φ : U × V → R× Ck0 ' R2k0+1 by

Φ(r, t) = (cr,t,0, cr,t,1, · · · , cr,t,k0)

where cr,t(ζ) =
∑

n<0 cr,t,nζ
n + cr,t,0 +

∑
n>0 cr,t,nζ

n with cr,t,n = cr,t,−n. With a slight
abuse of notations, we will also write Φ(r, c, f) = Φ (r,F(r, .)−1(c, f)); this notation
will be used in the proof of Theorem 1.2.

Lemma 4.1. Shrinking the neighborhoods U and V if necessary, the map Φ is a
submersion.

Proof. According to the proof of Lemma 3.5 and Lemma 2.9, the derivative ∂Φ
∂t

(ρ, 0)
is of rank 2k0 +1. Thus for r in a neighborhood of ρ and t sufficiently small, the rank
of ∂Φ

∂t
(r, t) is also 2k0 +1. This proves that for a fixed ρ, the map Φ(ρ, .) : V → R2k0+1

is a submersion. �

We define a real 2-dimensional submanifold Γ of R× Ck0 in the following way:

Γ = {(c0, . . . , ck0) ∈ R× Ck0| c(b) = (bζ + 1 + bζ)k0 =
∑−1

n=−k0 cnζ
n + c0 +

∑k0
n=1 cnζ

n,

b ∈ C, |b| < 1/2},

An easy computation shows that
c0(b) = 1 +O(|b|2),

c1(b) = k0b+O(|b|2),

cn(b) = O(|b|2) for 2 ≤ n ≤ k0.
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It follows that the tangent space of Γ at the point c0 = 1 is generated by the vectors
(0, 1, 0, . . . , 0) and (0, i, 0, . . . , 0). Using Lemma 4.1, the set Φ−1(Γ) is a smooth
submanifold of U × V , and, for r ∈ U , the submanifold

Mr
η = Sr0,η ∩ F(Φ−1(Γ))

has real dimension 2`0 + 4 = 2k0 − d+ 4 = 4k0 − d+ 3− (2k0 − 1). Henceforth, we
will restrict our attention to the submanifold Mr

η and we will study the properties
of discs in that submanifold.

Remark 4.2. Notice that the point p0 = (ρ, c0, h0, g0) belongs to Mρ
η. More in

general, for b ∈ C such that |b| < 1/2, define p(b) = (ρ, c(b), h(b), g(b)) with c(b) =

(bζ+1+bζ)k0 , h(b) = 1−ζ
1−a(b)ζ

where a(b) =
−1+
√

1−4|b|2
2b

and g(b) is uniquely determined

by h(b). Then p(b) belongs toMρ
η for all b ∈ C with |b| < 1/2. We will use this special

family of k0-stationary discs alongside with Lemma 3.5 to compute the tangent space
of Mρ

η at p0.

Define π : Y → (1− ζ)Ak,α × (1− ζ)Ak,α to be the projection on the (h, g) factor
and π′ : Y → (1− ζ)Ak,α to be the projection on the h factor.

Lemma 4.3. The restrictions of π′ and of π to Tp0Mρ
η are injective.

Proof. We first note that, as follows from the proofs of Lemmas 3.4 and 3.5), for any
(c′, h′, g′) ∈ Tp0Mρ

η we have that g′ is uniquely determined by h′. It immediately
follows that π is injective if and only if π′ is injective, and in the rest of the proof we
can ignore the factor relative to g′.

We start by computing the tangent space of the real 2-dimensional submanifold of
Mρ

η given by the parametrization p(b) defined above, at p0 = p(0). Developing c(b)

and h(b) up to first order in b and taking in account that a(b) = −b+O(|b|2), we get c(b) = bζ + 1 + bζ +O(|b|2),

h(b) = (1− ζ)(1− bζ) +O(|b|2).

It follows that the (projection to the (c, h) factor of the) tangent space of the sub-
manifold parametrized by p(b) at p0 is generated over R by (ζ + ζ,−(1 − ζ)ζ) and
(−iζ + iζ, i(1 − ζ)ζ). In view of the proof of Lemma 3.5, the elements of (the pro-
jection to the (c, h) space of) Tp0Mρ

η are the vectors given by

(4.1) (2t1Re ζ − 2t2Im ζ, (1− ζ) · ((−t1 + it2)ζ + h′′(ζ)) )

for t1, t2 ∈ R and where h′′ is a solution of (3.3) for v = 0.
Define now the linear subspace H′′ ⊂ Ak,α as the span over C of ζ and of ho-

mogeneous solutions of (3.3). Moreover, set H′ = (1 − ζ)H′′ ⊂ (1 − ζ)Ak,α. By
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(4.1), it follows that H′ is the image of the restriction of π′ to Tp0Mρ
η, and π′

is injective if and only if the function ζ is not a solution of (3.3). Recal that
t(ζ) =

∏
i0+1≤j≤2k0−d(qj − ζ). We have

P(t(ζ)ζ) =

∏
i0+1≤j≤2k0−d qj

ζ
.

Since none of the roots of t is equal to zero we have P(t(ζ)ζ) 6= 0.
�

In particular, notice that dimRH′ = 2`0 + 4.
Define now, for any n ∈ N, n ≤ k, the n-jet map at 1 as the complex linear map

jn : (1− ζ)Ak,α → Cn given by

jn(h) = (h′(1), h′′(1), . . . , h(n)(1))

for any h ∈ (1− ζ)Ak,α.

Proposition 4.4. Let S = {ρ = 0} be a model hypersurface of finite type d. Fix a
k0-stationary disc f0(ζ) = (1− ζ, g0(ζ)) with c0 ≡ 1, attached to S. Then

i) There exists a sufficiently small θ ∈ R such that the derivative of the evaluation
map ϕ : π′(Mρ

η) → C2 defined by ϕ(h) = (h(0), g(0)), at the point hθ(θ) =

(1− ζ)eiθ, is surjective.
ii) Shrinking the neighborhood U of ρ, and η > 0, given in Theorem 3.1, for r ∈ U ,

for `0 = k0− d/2, the restriction of j`0+2 to π′(Mr
η) is a diffeomorphism onto its

image.

In particular, point i) of Proposition 4.4 implies that the set {(h(0), g(0)) ∈
C2|(h, g) ∈ π(Mρ

η)} ⊆ {(h(0), g(0)) ∈ C2|(c, h, g) ∈ Sρ0} contains an open set.

4.1. Proof of i) of Proposition 4.4. Define the composed map

ψ : π′(Mρ
η)→ π(Mρ

η)→ C2

defined by ψ : h 7→ (h, g) 7→ (h(0), g(0)). Recall that (h, g) ∈ Sρ0 satisfy for ζ ∈ b∆

Re g(ζ) = P (h(ζ), h(ζ)).

Thus, from g(1) = 0 and from classical facts on Cauchy transform (see Lemma 3 in
[36]), we have

g(0) =
1

iπ

∫
b∆

Re g(ζ)

1− ζ
dζ

ζ
=

1

iπ

∫
b∆

P (h(ζ), h(ζ))

1− ζ
dζ

ζ
.
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We consider the subset M′ :=
{
h ∈ π′(Mρ

η)| h(ζ) = 1−ζ
1−aζ v, a ∈ ∆, v ∈ C∗

}
. Notice

that for such a disc h, the tangent disc h′ ∈ ThM′ can be written

h′(ζ) =
(1− ζ)ζ

(1− aζ)2
va′ +

1− ζ
1− aζ

v′

where (a′, v′) ∈ C2. Consider the disc hθ ∈M′ given by hθ(ζ) = (1− ζ)eiθ ∈M′ for
θ sufficiently small. The derivative of ψ at hθ ∈M′ is given by

dhθψ(h′) = (h′(0), dhθg(0)(h′))

=

(
h′(0),

1

iπ

∫
b∆

Pz(hθ(ζ), hθ(ζ))h′(ζ)

1− ζ
dζ

ζ
+

1

iπ

∫
b∆

Pz(hθ(ζ), hθ(ζ))h′(ζ)

1− ζ
dζ

ζ

)
.

where h′ ∈ ThθM′. Now we fix (Z,W ) ∈ C2 and we solve dhθψ(h′) = (Z,W ). The
first component gives v′ = Z and the second component leads to

iπW =

∫
b∆

Pz

(
hθ(ζ), hθ(ζ)

)
Z
dζ

ζ
+

∫
b∆

Pz

(
hθ(ζ), hθ(ζ)

)
eiθa′dζ

−
∫
b∆

Pz

(
hθ(ζ), hθ(ζ)

)
Z
dζ

ζ2
−
∫
b∆

Pz

(
hθ(ζ), hθ(ζ)

)
e−iθa′

dζ

ζ3
.

Set I1(θ) =
∫
b∆
Pz

(
hθ(ζ), hθ(ζ)

)
dζ and I2(θ) = −

∫
b∆
Pz

(
hθ(ζ), hθ(ζ)

)
dζ
ζ3

. It fol-

lows that dhθψ(h′) is surjective if and only if |I1(θ)|2 6= |I2(θ)|2. A straightforward
computation leads to

I1(θ) = −
k0∑

j=d−k0

(
d− 1

d− 1− j

)
jαje

i(2j−d−1)θ.

I2(θ) =

k0−2∑
j=d−k0

(
d− 1

d− 3− j

)
(d− j)αjei(2j−d+1)θ

if d− 3 < k0, and

I2(θ) =

k0∑
j=d−k0

(
d− 1

d− 3− j

)
(d− j)αjei(2j−d+1)θ.

otherwise. The highest degree term of the trigonometric polynomial |I1(θ)|2 is given
by

I1(θ)′ = k0(d− k0)αk0αd−k0

(
d− 1

k0 − 1

)(
d− 1

d− 1− k0

)
jαje

i(4k0−2d)θ.
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In case k0 ≤ d− 3, the highest degree term of the trigonometric polynomial |I2(θ)|2
is given by

I2(θ)′ = k0(d− k0)αk0αd−k0

(
d− 1

k0 − 3

)(
d− 1

d− 3− k0

)
jαje

i(4k0−2d)θ.

Since
(
d−1
k0−1

)(
d−1

d−1−k0

)
<
(
d−1
k0−3

)(
d−1

d−3−k0

)
, there exist a sufficiently small θ such that

|I1(θ)|2 6= |I2(θ)|2. Finally if d−3 < k0, the degrees of the trigonometric polynomial of
|I2(θ)|2 and |I1(θ)|2 are different and therefore |I1(θ)|2 6= |I2(θ)|2 for some sufficiently
small θ. �

4.2. Proof of ii) of Proposition 4.4. In order to prove the second part of Proposi-
tion 4.4. it is sufficient to show that the restriction of j`0+2 to π′(Tp0Mρ

η) is injective.
We first compute explicitly the tangent space ofMρ

η at p0. Recall that the elements
of (the projection to the (c, h) space of) Tp0Mρ

η are given by

(2t1Re ζ − 2t2Im ζ, (1− ζ) · ((−t1 + it2)ζ + h′′(ζ)) )

for t1, t2 ∈ R and where h′′ is a solution of (3.3) for v = 0. We need to describe
explicitly the solutions h′′ of (3.3) for v = 0. If t(ζ) ≡ 1 put `0 = 0, otherwise write

t(ζ) =
∑`0

i=0 tiζ
i where `0 is defined in Lemma 3.4 and ti ∈ C. We need to find

h′′(ζ) =
∑

n≥0 h
′′
nζ

n such that t(ζ)h′′(ζ) ∈ Ak,α. This translates into the following
recursion:

(4.2) t`0h
′′
n+`0

+ . . .+ t1h
′′
n+1 + t0h

′′
n = 0

for all n ≥ 1. Therefore, we must examine the solutions of (4.2). Let r1, . . . , r`1 be
the distinct roots of the polynomial t(ζ), with, respectively, multiplicity m1, . . . ,m`1 ,

so that
∑`1

j=1 mj = `0. Moreover, put r0 = 0, m0 = 1. The general solution of (4.2)

is then given by h′′n =
∑`1

j=0 Qj(n)rnj , n ≥ 0, where with a slight abuse of notation

we set (r0)0 = 1 and where each Qj is a polynomial of degree at most mj − 1 with
complex coefficients. Put Rj(ζ) =

∑
n≥0 r

n
j ζ

n = 1
1−rjζ . It is easy to see that, for

any fixed polynomial Qj of degree mj − 1, there exist qj,0, . . . , qj,mj−1 ∈ C such that∑
n≥0Qj(n)rnj ζ

n =
∑mj−1

i=0 qj,iζ
iR

(i)
j (ζ). Hence for the general solution h′′(ζ) of the

homogeneous version of (3.3) we get

h′′(ζ) =

`1∑
j=0

∑
n≥0

Qj(n)rnj ζ
n =

`1∑
j=0

mj−1∑
i=0

qj,iζ
iR

(i)
j (ζ) =

`1∑
j=0

mj−1∑
i=0

i! · qj,i
rijζ

i

(1− rjζ)i+1

for qj,i ∈ C. Note that, for all 1 ≤ j ≤ `1, 0 ≤ i ≤ mj − 1

rijζ
i

(1− rjζ)i+1
=

(1− (1− rjζ))i

(1− rjζ)i+1
=

i∑
κ=0

(−1)κ
(
i

κ

)
1

(1− rjζ)κ+1
,
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hence we can also write the general solution as

(4.3) h′′(ζ) = s0,0 +

`1∑
j=1

mj−1∑
i=0

sj,i
1

(1− rjζ)i+1

for sj,i ∈ C. It follows that the elements of (the projection to the (c, h) space of)
Tp0Mρ

η are the vectors given by

(2t1Re ζ − 2t2Im ζ, (1− ζ) · ((−t1 + it2)ζ + h′′(ζ)) )

for t1, t2 ∈ R and h′′(ζ) as in (4.3).
Let H′ = π′(Tp0Mρ

η) be the (2`0 + 4)-dimensional space introduced in Lemma 4.3,
and set

u0 = 1, u1 = ζ,

{
uj,i =

1

(1− rjζ)i+1

}
1≤j≤j1,

0≤i≤mj−1

.

By definition, a basis of H′ is then given by (1 − ζ)u0, (1 − ζ)u1 and (1 − ζ)uj,i.
By the Leibniz rule, for every v(ζ) = (1 − ζ)u(ζ) and n ≥ 1 we have v(n)(ζ) =
(1− ζ)u(n) − nu(n−1)(ζ), so that v(n)(1) = −nu(n−1)(1). Since

dn

dζn

(
1

(1− rjζ)i+1

)
=

(i+ n)!

i!
·

rnj
(1− rjζ)i+n+1

,

it follows that, for every n > 2, the expression of jn in the given basis is

(−1) ·



1 1 1
1−r1

1
(1−r1)2

· · · 1
(1−r`1 )

m`1

0 2 2 r1
(1−r1)2

2 2r1
(1−r1)3

· · · 2
m`1r`1

(1−r`1 )
m`1

+1

0 0 3
2r21

(1−r1)3
3

6r21
(1−r1)4

· · · 3
m`1 (m`1+1)r2`1

(1−r`1 )
m`1

+2

...
...

...
...

. . .
...

0 0 n
(n−1)!rn−1

1

(1−r1)n
n

n!rn−1
1

(1−r1)n+1 · · · n
(m`1+n−2)!rn−1

`1

(m`1−1)!(1−r`1 )
m`1

+n−1


.

Taking n = `0 + 2, the one above is a square matrix of size `0 + 2. Put now
χj =

rj
1−rj . After a suitable sequence of scalar multiplications of the row/columns,

we can transform the previous matrix into the following one:
1 1 1 1 · · · 1
0 1 χ1 2χ1 · · · m`1χ`1
0 0 χ2

1 3χ2
1 · · ·

(
m`1+1

2

)
χ2
`1

...
...

...
...

. . .
...

0 0 χ`0+1
1 (`0 + 2)χ`0+1

1 · · ·
(
m`1+`0
`0+1

)
χ`0+1
`1

 .
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Next, performing a sequence of subtractions of columns and keeping in account the
properties of the binomial coefficients, we get

1 1 1 −2 · · · 1 −2 · · · (−1)m`1+1(m`1 + 1)
0 1 χ1 −χ1 · · · χ`1 −χ`1 · · · (−1)m`1+1χ`1
0 0 χ2

1 0 · · · χ2
`1

0 · · · 0
0 0 χ3

1 χ3
1 · · · χ3

`1
χ3
`1

· · · 0
...

...
...

...
. . .

...
...

. . .
...

0 0 χ`0+1
1 (`0 − 1)χ`0+1

1 · · · χ`0+1
`1

(`0 − 1)χ`0+1
1 · · ·

(
`0−1
`0−m`1

)
χ`0+1
`1


.

Finally, a further sequence of column multiplications gives



1 1 1
χ2
1

−2
χ3
1

· · · 1
χ2
`1

−2
χ3
`1

· · · (−1)
m`1

+1
(m`1+1)(m`1−1)!

χ
m`1

+1

`1

0 1 1
χ1

−1
χ2
1

· · · 1
χ`1

−1
χ2
`1

· · · (−1)
m`1

+1
(m`1−1)!

χ
m`1
`1

0 0 1 0 · · · 1 0 · · · 0
0 0 χ1 1 · · · χ`1 1 · · · 0
...

...
...

...
. . .

...
...

. . .
...

0 0 χ`0−1
1 (`0 − 1)χ`0−2

1 · · · χ`0−1
`1

(`0 − 1)χ`0−2
1 · · · (`0−1)!

(`0−m`1 )!
χ
`0−m`1
`1


.

The `0 × `0 minor obtained by erasing the first two rows and columns of the
previous matrix is a confluent Vandermonde matrix: it is a well-known fact that its
determinant does not vanish. It follows that the determinant of the whole matrix is
in turn non-vanishing, hence j`0+2 is injective as claimed.

�

5. Application to finite jet determination

5.1. Dilation. Let U be a neighborhood of 0 in C2, and let r : U → R be a real
valued function of class Cd+k+3 that can be written as (3.1), namely

r(z, w) = ρ(z, w) +
∑

i+j=d+1

(zizj) · rij0(z) +
d∑
l=1

∑
i+j=d−l

zizj(Imw)l · rijl(z, Imw)

for suitable rij0 ∈ Ck+3
C , rijl ∈ Ck+3

C . Moreover, let H : U → C2 be a local CR-
diffeomorphism of class Ck+d+2, tangent to the identity, and preserving {r = 0}. We
still denote by H its local one-sided extension which is of class Ck+d+2 up to {r = 0}.
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We can write H = (H1, H2), where
H1(z, w) = z +

∑
j+l=2 z

jwlHjl
1 (z, w),

H2(z, w) = w +
∑

j+l=2 z
jwlHjl

2 (z, w),

where Hjl
1 and Hjl

2 are of class Ck+d.

Lemma 5.1. We have H2(z, 0) = O(|z|d+1).

Proof. Setting s(z, Imw) = r(z, w)−Rew, we can locally write {r = 0} as {Rew =
s(z, Imw)}. The fact the hypersurface is invariant under H translates into the map-
ping equation

ReH2(z, s(z, Imw)+iImw) = s(H1(z, s(z, Imw)+iImw), ImH2(z, s(z, Imw)+iImw))

which, computed along Imw = 0, gives

(5.1) ReH2(z, s(z, 0)) = s(H1(z, s(z, 0)), ImH2(z, s(z, 0))).

Suppose, by contradiction, that for some κ ≤ d the monomial of smallest order
appearing in the Taylor expansion of H2(z, 0) is zκ. Then since ReH2(z, w) = Rew+
O(2), the left-hand-side of (5.1) can be expressed as

ReH2(z, s(z, 0)) = Re (azκ) + P (z, z) +O(|z|min(κ,d)+1)

for some a 6= 0. Taking in account that ImH2(z, s(z, 0)) = Im (azκ) +O(|z|κ+1) and
the expression of r, we can expand the right-hand-side as

s(H1(z, s(z, 0)), ImH2(z, s(z, 0))) = P (z, z) +O(|z|min(κ,d)+1)

which immediately gives a contradiction if κ ≤ d. �

For t > 0, denote by φt the linear map

φt(z, w) = (tz, tdw),

and let rt = 1
td
r ◦ φt and Ht = φ−1

t ◦ H ◦ φt be the direct images of, respectively,
r and H, under φt. The purpose of using a dilation method is to ensure that the
scaled hypersurface {rt = 0} is close enough to the model hypersruface and that Ht

is a small perturbation of the identity as t→ 0. This allows to use the results of the
previous sections to obtain a jet determination for Ht, and thus for H.

For any δ > 0, if t > 0 is small enough, we have φt

(
δ∆

2
)
⊂ U , hence Ht is defined

on δ∆
2

and rt ∈ X (see Section 3 for the definition of the space X). Although the
following lemma is a classical fact, we include the proof because of the nonstandard
choice of the norm ‖.‖X .

Lemma 5.2. We have ‖rt − ρ‖X → 0 as t→ 0.
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Proof. Indeed,

rt(z, w) = ρ(z, w) +
∑

i+j=d+1

(zizj) · rtij0(z) +
d∑
l=1

∑
i+j=d−l

zizj(Imw)l · rtijl(z, Imw)

with 
rtij0(z) = t rij0(tz),

rtijl(z, w) = tl(d−1)rijl(tz, t
dImw) for l ≥ 1,

It is clear that ‖rtijl‖Ck+3(δ∆
2
)
→ 0 as t→ 0 , and the claim of the lemma follows from

the definition of the norm in the space X. �

We will employ now the notation Z = (1− ζ)Ak,α × (1− ζ)Ak,α and the norm

‖(h, g)‖Z = ‖h‖(1−ζ)Ak,α + ‖g‖(1−ζ)Ak,α .

We also need to show that

Lemma 5.3. For all f = (h, g) ∈ Z and t > 0 small enough we have Ht ◦f ∈ Z and

‖Ht ◦ f − f‖Z ≤ tK max(1, ‖f‖d+k+2
Z )

for some constant K > 0.

Proof. Indeed we have Ht(z, w) = (H t
1(z, w), H t

2(z, w)), with
H t

1(z, w) = z +
∑

j+l=2 t
j+dl−1zjwlHjl

1 (tz, tdw),

H t
2(z, w) = w +

∑
j+l=2 t

j+dl−dzjwlHjl
2 (tz, tdw).

Posing h = (1− ζ)h̃, g = (1− ζ)g̃, with h̃, g̃ ∈ Ak,α, we get
H t

1(h, g) = h+ (1− ζ)2
∑

j+l=2 t
j+dl−1h̃j g̃lHjl

1 (t(1− ζ)h̃, td(1− ζ)g̃),

H t
2(h, g) = g + (1− ζ)2

∑
j+l=2 t

j+dl−dh̃j g̃lHjl
2 (t(1− ζ)h̃, td(1− ζ)g̃).

It follows that
‖H t

1(h, g)− h‖(1−ζ)Ak,α =
∥∥∥(1− ζ)

∑
j+l=2 t

j+dl−1h̃j g̃lHjl
1 (t(1− ζ)h̃, td(1− ζ)g̃)

∥∥∥
Ck,αC

,

‖H t
2(h, g)− g‖(1−ζ)Ak,α =

∥∥∥(1− ζ)
∑

j+l=2 t
j+dl−dh̃j g̃lHjl

2 (t(1− ζ)h̃, td(1− ζ)g̃)
∥∥∥
Ck,αC

.

Note that in the previous sum, if l 6= 0 then j + ld − d ≥ 1. If l = 0, we have to
consider the summand

t2−dh̃2H2,0
2 (t(1− ζ)h̃, td(1− ζ)g̃).
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since by Lemma 5.1 we can express H2,0
2 as

H2,0
2 (z, w) = zd−1φ1(z) + wφ2(z, w)

where φ1 and φ2 are of class Ck+1, we can write the summand as

t(1− ζ)d−1h̃d+1φ1(t(1− ζ)h̃) + t2(1− ζ)h̃2g̃φ2(t(1− ζ)h̃, td(1− ζ)g̃)

The estimate of the lemma then follows from the previous expressions, using the facts
that the norm of (1− ζ) in Ak,α is finite, and that the Ck,α norm of a composition is
estimated by a constant times suitable powers of the Ck,α norms of the maps which
are composed. �

5.2. Proof of Theorem 1.2. Let M be a real hypersurface of class Cd/2+k0+5 whose
defining function r is locally written as in Theorem 1.1 and let H be a germ at 0
of CR-diffeomorphism of class Cd/2+k0+3 such that H(0) = 0 and H(M) = M . We
assume that H is tangent to the identity up to order `0 + 2 = k0 − d/2 + 2. We
denote by H its local one-sided extension, of class Cd/2+k0+3 up to M .

Let 0 < α < 1. According to the first point of Proposition 4.4, for every sufficiently
small ε > 0 there exists a k0-stationary disc f ∈ Z attached to the model hypersurface
S = {ρ = 0} with coefficient c ∈ C`0+2,α such that ‖(c, f) − (1, f0)‖Y < ε and the
restriction of the evaluation map ϕ, as a map fromMρ

η to C2, to the tangent space of
Mρ

η at (c, f) is onto. As a consequence we have the following: for every sufficiently
small ε > 0, there exists ε′ > 0 such that for all r ∈ X with ‖r−ρ‖X < ε′ there exists
a k0-stationary disc f ∈ Z attached to {r = 0} with coefficient function c ∈ C`0+2,α

such that ‖(c, f) − (1, f0)‖Y < ε and the restriction of the evaluation map ϕ to the
tangent space of Mr

ε at (c, f) is onto.
Fix now ε > 0 such that ε < η/2, where η is defined in Theorem 3.1. Using

Lemma 5.2, we can find t > 0 such that rt ∈ V and ‖rt − ρ‖ < ε′, where V is
neighborhood of ρ in X identified in Theorem 3.1. We can further require that
t < ε/2d+`0+4K‖f0‖d+`0+4

Z with K as in the statement of Lemma 5.3. In view of the
previous paragraph, we can find a k0-stationary disc (c1, f1) ∈ Mrt

ε , such that the
evaluation map ϕ is locally surjective in a neighborhood (c1, f1).

Hence, we can find a neighborhood O′ of (c1, f1) in Mrt
ε such that ϕ(O′) = O is

an open subset of the bidisc (δ∆)2. Choose any q ∈ O, and let (cq, fq) ∈ O′ ⊂ Mrt
ε

be such that f(0) = q. Note that ‖fq‖Z ≤ ‖f0‖Z + ε ≤ 2‖f0‖Z if ε is small enough.
Since Ht is tangent to the identity, we can apply Lemma 5.3 to get

(5.2) ‖Ht ◦ fq − fq‖Z ≤ tK‖fq‖d+`0+4
Z ≤ tK2d+`0+4‖f0‖d+`0+4 ≤ ε

by the choice of t. On the other hand, by Proposition 2.4 the disc Ht ◦ fq is again
a stationary disc attached to {rt = 0}, with coefficient function cq, and tied to the



STATIONARY DISCS AND FINITE JET DETERMINATION 27

origin. Moreover, from (5.2) follows that

‖(cq, Ht ◦ fq)− (c0, f0)‖Y ≤ 2ε < η.

Thus (cq, Ht ◦ fq) ∈ Srt0,η, and since Φ(rt, cq, Ht ◦ fq) = Φ(rt, cq, fq) ∈ Γ we deduce
that (cq, Ht ◦ fq) ∈Mrt

η .
Since Ht is tangent to the identity up to order `0 + 2, we also have that the

holomorphic disc Ht ◦ fq(ζ) is tangent to fq(ζ) at ζ = 1 up to order `0 + 2. The
second point of Proposition 4.4 then implies that Ht ◦ fq ≡ fq, and computing at
ζ = 0, we get in particular Ht(q) = q. Since this holds for any q belonging to the open
set O, we conclude that Ht, and therefore H, coincides with the identity map. �

5.3. A remark on Theorem 1.3. We note that Theorem 1.3 is in the vein of some
previous boundary rigidity results involving smooth hypersurfaces. D. Burns and S.
Krantz [8] proved that if D ⊂ Cn is a smooth bounded and strongly pseudoconvex
domain, then if H : D → D is holomorphic and satisfies H(Z) = Z + o(|Z − p|3)
as Z → p ∈ bD, then H coincides with the identity. As shown by X. Huang [29],
in case D is strongly convex, the assumption reduces to H(Z) = Z + o(|Z − p|2).
Moreover, if D ⊂ Cn is a smooth bounded convex domain of finite type, then there
exists a number `, depending only the geometric properties of bD near p, such that
if H(Z) = Z + o(|Z − p|m) as Z → p ∈ bD, then H coincides with the identity; for
instance in C2, the number ` can be taken to be 5d + ε for some ε > 0, where d is
the type of bD at p. As a matter of fact, we point out that the methods developed
in [8, 29] were based on Lempert’s theory [34] of extremal discs for the Kobayashi
metric in convex bounded domains.
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