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ABSTRACT. We define an analogue of the Baernstein star function for a meromorphic function f
in several complex variables. This function is subharmonic on the upper half-plane and encodes
some of the main functionals attached to f. We then characterize meromorphic functions admitting
a harmonic star function.

INTRODUCTION

One aspect of the classical theory of meromorphic functions of finite order, is the search for
sharp asymptotic inequalities between certain functionals associated with a given function f. Such
functionals include, among others, counting functions for a-values, the Nevanlinna characteristic
or the maximum modulus, denoted respectively by

N(r,a; ), T(r, ), M(r; f).

There is a vast body of literature on those inequalities notably for functions of order less than one.
We note in particular a unified approach to some of those inequalties that has been presented by J.
Rossi and A. Weitsmann in [14] using the theory of the Phragmén-Lindelof indicator along with
the Baernstein star function of f. The star function, denoted by 7 (re® | f), was introduced by A.
Baernstein [3, 4], and used successfully by him in several problems beginning with the settlement
of Edrei’s spread conjecture [6]. The crowning achievement in the use of the star function by A.
Baernstein, was the proof that the Koebe function is extremal for the L” norms of all functions in
the standard class S. A key ingredient in Baernstein proofs was the fact that while the star function
of a typical meromorphic function f is always subharmonic in the upper half-plane, that of the
extremal function is harmonic.

The problems and techniques above have been considered and extended for subharmonic func-
tions in R™ by many authors (see for instance [5, 13, 14, 10]). In particular, A. Baernstein and B.
A. Taylor [5] introduced an analogue of the star function in higher dimension. However, although
such approach is rather natural for the study of subharmonic or d-subharmonic functions in R", it
does not seem that the star function introduced in [5] is well adapted to the distribution theory of
entire, meromorphic or plurisubharmonic functions in several complex variables. In this respect,
the first author had already suggested at least two possible definitions for a general star function
[2] in several complex variables. In the present work, we follow one of those approaches and intro-
duce the star function of a meromorphic function F'in C" by averaging over the unit sphere the star
functions 7(., F¢) of its “slices” F : C — C defined by F¢(z) = F'(2¢). Our first concern is to
study the continuous dependence of 7(., F) on the parameter ¢ (Theorem 1). In analogy with [1],
where the first author characterized all meromorphic functions admitting a harmonic star function
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in one variable (see also [9]), we provide a similar characterization in several complex variables
(Theorem 2). As might be expected, new elements enter the picture in the several variables case.
In particular, it connects with the problem of determining a meromorphic function F' : C* — C
from the knowledge of zero sets of its “’slice” functions. We hope that our approach will allow to
extend to several complex variables some of the known inequalities in C and carry over a program
similar to the one variable case. This will be the focus of forthcoming work.

The paper is organized as follows. In Section 1, we study the continuity on the unit sphere of
T*(., F¢) with respect to ¢ which allows us, in particular, to define an analogue of the Baernstein
star function for meromorphic functions in several complex variables. In Section 2, we characterize
meromorphic functions admitting a harmonic star function.

1. STAR FUNCTION FOR MEROMORPHIC FUNCTION OF SEVERAL VARIABLES

We denote by A, = {z € C | |z|] < r} the disc in C centered atthe origin and of radius r > 0.
We denote the upper half-plane by H = {z € C | Smz > 0} and by S**~! the unit sphere in C".

Consider a meromorphic function F' : C* — C such that F'(0) = 1. Recall that /" can be written

as F' = T where G and H are two coprime entire functions (see for instance Theorem 6.5.11 in
[11]). Define for ¢ € S*"~!, the trace of F' on the complex line {z( | z € C}, F; : C — C by

Fe(2) = F(2().

Fort > 0 and a € C U {co}, let n(t, a; F;) be the number of a-points of F; in the closed disc A;.
For a € {0, 00} and r > 0, the counting function of F; is defined by

"n(t,a; F)

N(r,a; F;) = / ST gy,
0 i

Note that according to Jensen’s formula, one has

1 [ -
(1.1) N(r,0; F;) — N(r,o00; F¢) = 2—/ log | F(re?¢)|db.
™ s

For ¢ € S*!, we consider the Baernstein star function associated to F : C — C (see [3, 4])
T*(re | F;) = sup —/ log |F(re™()|dz + N(r, oo; F¢)
E 27T E

where re? € H \ {0} and where the sup is taken over all sets E C [—, 7] of Lebesgue measure
|E| = 26. We will write

Fg‘(rew) = s%p %/Elog|F(remC)|dx.
Note that
T*(r, F¢) = N(r, 00; F¢)
and that Jensen’s formula (1.1) implies

T*(—T, Fc) = N(T’, O, Fc)
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The fundamental result of A. Baernstein states that 77(., F) is subharmonic on H and continuous
on H \ {0} [3, 4]; moreover, under the assumption that F-(0) = 1, T*(., F;) extends continuously
on H. Our first main result is that for a fixed re®, r > 0, 8 € [0,7) the map ¢ — T*(re, F;) is
continuous a.e. on the sphere S?"~!:

G
Theorem 1. Let F' = T C"™ — C be a meromorphic function satisfying F'(0) = 1, where G and

H are two coprime entire functions. Define the following set
X ={¢ces™ G 0)nH'(0) # 0}.
Then

i. The set X has Lebesgue measure zero on S*" 1.
ii. Forafixedre®, r> 0,0 € [0,7), the function ( Fg(rele) is continuous on S*" 1\ X.
iii. For a fixed r > 0 the function { — N (r, 00; F;) is continuous on S*"~' \ X.

In order to prove Theorem 1 we first establish two lemmas which may be of independent interest.
Following A. Baernstein [4], we introduce the level sets

E(¢,t) ={z € [-m,7] | log |F(re" ()| > t},

where ¢ € S**~1, ¢t € Rand r > 0. It follows from the proof of Proposition 1 in [4] that for any
¢ € S ! there exists £(¢) € R such that

T*(re Fy) = —/ log |F(re*()|dx + N(r, 00; F¢)
E(t(0))

2m
with |E((,t(¢))| = 26. Indeed, following A. Baernstein’s notations in [4], in our case the distribu-
tion function \(¢) = |E((,t)| of F¢ is continuous since every level set of F has measure zero and
one can take &/ = A. It follows that

1.2) T*(re" . F¢) = - /Tr log™ (| F(re¢)| = t(¢)) da + oe(c)

T

where log™ (|[F'(re'*¢)| — #(¢)) = max{log | F(re()| — #(¢),0}.

Lemma 1.1. The function ¢ — t({) is continuous on S*" 7!\ X.

G
Proof. Fix ¢, € S*!'\ X and ¢ > 0. Recall that FF = T where G and H are two coprime

entire functions. Denote by p; = re®i(y € C* with z; € [—m, 7], j = 1,--- , N, the points such
that H(p;) = 0. Note that since {;, € S*"~' \ X then G(p;) # 0. There exists ¢’ > 0 such that
if Z € UY_B(p;,¢’) then log |[F(Z)| > (¢o) + 1. Here B(p;,&’) denotes the open ball centered
at p; and of radius ¢. We then chose § > 0 such that if [z — z;| < ¢ forsome j = 1,--- N
and ||¢ — (ol < & then re"*( € B(p;,e’). Next we choose ¢’ large enough in such a way that if
x € E((p,t") then there exists 1 < j < N such that |x —x;| < J. Finally we consider a compact set
K C [—m, 7] avoiding the singularities of log | F'(re**(y)| and containing E((p,t((o)) \ E (o, t').
There exists ¢’ > 0 such that if || — (|| < ¢’ then

sullg |log | F'(re™¢)| — log | F(re™¢)|| < e.
S
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Letz € E({o,t(¢o)) \ E(Co,t'). Then log |F(re(y)| > t({y) and so
(1.3) log |F(re*()| > log |F(re™(o)| — e > t((y) — €

whenever || — (|| < ¢'. Now let z € E((p,t'). Then there is 1 < j < N such that |z — z;| < d.
If ||¢ = (ol < & then re™¢ € B(p;,<’) and therefore

(1.4) log |F(2)] > t(() + 1.
It follows from (1.3) and (1.4) that

E(Co, t(C0)) € E(C,t(¢0) —€).

whenever ||¢ — (ol < min{0,d"}. Since |E(Co,t(¢o))| = |E(C,t(C))| = 26, this implies t(¢) >
t(Co) — €. By symmetry we obtain [t(¢) —t({p)| < €if || — (o|| < min{d,d’}. Therefore ¢ — ¢(C)
is continuous on S~ 1\ X, O

Lemma 1.2. Let H : C* — C be an entire function and let r > 0. The function { >
J7 log |H(re'¢)|dx defined on S*"~* is continuous.

Proof. Let (s € S** ' andlete > 0. If E C [—7, 7] is a set then, following [8] and using Lemma
Il in [7], we have for any ¢ € S**~1

1 A 1
o [ Vgl e < mrs e By m (v B
2 Jp H

1 1
c|T@2r,H)+T <2r, —)) |E| (1 + log™® —)
( ‘ H; B

1
3cT'(2r; He) | E| (1 + log* E)

IA

IN

IN

1
3clog M (2r; He)| E| <1 + log™ E)

< J()|E| (1 +log* ﬁ) —U(r, E)

where ¢ > 0 is a constant, ¢/(r) > 0 is a constant depending only on 7, and where
1 .
m(r;He, E) = —/ log™ H¢(re')da.
21 Jp

Consider now ¢, < 0 with —¢, large enough such that 27U (r, [—m, 7]\ E({p, o)) < €. There exists
d > 0 such that if ||¢ — (|| < ¢ then

sup _|log | H (re" ()| — log |H (re" )| < e.

z€E(Costo)

Set
= ’/ log | H (re'¢)| —log [H (re'(o)|d| .
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For ¢ € S*"~! such that ||¢ — (o|| < 8, we have

F< | [ toglHEe0] - log | Hire"G)jds
E(Costo)
+ / log |H (re**¢)| — log |H (re**(y)|dx
[—m,7\E(Costo)
< / llog |[H (re™™¢)| — log | H (re'¢o)|| da: +/ [log | H (re' ()| da
E(Costo) [—m,m\E(Co,to)
+ / llog | H (rei*Cy)|| dx
[=m,7\E(Co,to)
< e+4nV (r,[—m, 7|\ E(Co,t0)) -
This proves the continuity of ¢ — [”_log|H (re**¢)|dx on the sphere S*"~ 1. O

We now prove Theorem 1.

Proof of Theorem 1. We prove i. Let Z C C" be the indeterminacy set of F, that is
(1.5) Z={ZeC"|G(Z)=H(Z)=0}.

By the assumptions on £, Z is a complex analytic subvariety of C" of complex dimension at most
n—2. Let 7 : C* — CP" ! be the projection of C" onto the projective space CP"~*. Note
that the restriction 7jgzn—1 is a constant rank map S*"~' — CP"'; it is indeed a fibration - the
Hopf fibration - with fiber S*. Therefore for any subset X C CP"~! we have that the (2n — 2-
dimensional) Lebesgue measure of K vanishes if and only if the (2n — 1-dimensional) Lebesgue
measure of the inverse image 7'|§21n,1 (K) C S* ! is zero. Since by definition X = Tl_an,l (1(2)),
to prove i. it is enough to show that 7(Z) C CP"~! has measure 0.

Since Z is a (n — 2)-dimensional complex subvariety of C”, there exists a countable collection
{Z;},en of locally closed, non-singular complex submanifolds of C", each one of dimension at
most . — 2, such that Z = U,y Z;. Fixed j € N, consider the restriction 7z, : Z; — CP"*~'. The
map 7|z, is smooth (and in fact analytic), and its rank at any point p of Z; is less than n — 1 since
dime Z; < n — 2, hence all p € Z; are critical points of 7z;. It follows by Sard’s theorem that
7(Z;) has measure zero. Since 7(Z) C UjenT(Z;) we conclude that 7(Z) has measure zero.

We now prove ii. We fix re® with r > 0 and § € [0,7). According to Equation (1.2) and
Lemma 1.1 we only need to show that the function

¢ [ log (IF(re0)| - 4(0)) da
defined on S*" \ X is continuous. Let {; € S** \ X and lete > 0. Set

J = ‘/_ﬂ log* (|F(re™¢)| — +(C)) — log* (|F(re¢o)| — #(Co)) da| .
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For ¢ € S*"\ X such that ||¢ — {y|| < J we have

7= [ (oglFireQ)| ~ 40) — (o8| Flre*co)] — t(6)] do

—T

< [ oelGre )] - log Gre e da

™

+/7T |log |H (re™¢)| — log |H(7"6w§0)|} dx +/ t(C) — t(Co)| dz

The statement 7:. now follows from Lemma 1.1 and Lemma 1.2.

Finally i74. follows directly from Lemma 1.2 since when ¢ € S?* \ X we have
N(r,o00; F;) = N(r,0; H;)
and by Jensen formula (1.1)

1 i )
N(r,0; H,) = %/ log | H(re"¢)| dz.

O

Notice that in case the set X is empty, Theorem 1 implies that, for a fixed re. r>0,0¢ [0, ),
the functions ¢ — F¢(re’) and ¢ — N(r, 00; F¢) are continuous on S*~'. This is in particular
the case when F' : C" — C is entire, or meromorphic without zeros. However, note that in general
the function ¢ — N(r, oo; F;) may not be continuous on S*"~!:

Example 1. Consider the meromorphic function on C? defined by
Z1 — 1

F(Zl,ZQ):Z 1
5 —

Then for any r > 0, we have N (r, co; Fy,)) = 0 for {y = (\/Li, \%) Now for ¢ = (rg, s5) € S*!
converging to (y we have
> n(t, 00; F,)

N(2,00; Fe,) :/ .
0

since n(t, 0o; Fy, ) equals 0 for 0 <t < 1/s;, and 1 for ¢t > 1/s;. It is interesting to notice that the
function ¢ — Fg‘(2e“9 ) is continuous at (. Indeed it can checked that if 7, > s > 0 we have

dt =log 2 + log sy,

4 1 0 rpe® — 1
Fr (2¢%) = — log| ——— | d
C’“(e) 2#/_90g spe® —1 v
and if s;, > r;, > 0 then
' 1 T+0 T,keim_
Fr(2e") = — log || dz.
.(2¢7) 2m /7r_9 o8 spe — 1 v

In both cases ¢ (2¢) — 1 as ¢, — (. However note that the set F(() realizing the supremum
in I, 5‘(26”) does not depend continuously on (.
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For a fixed 7¢, r > 0, 6 € [0, 7), since ¢ — T*(re, F;) is bounded, Theorem 1 shows in
particular integrability of 7*(re® | F;;) on the unit sphere and therefore allows us to define an ana-
logue of the Baernstein star function associated to a meromorphic function F' of several complex
variables.

Definition 1.1. Let F' : C" — C be a meromorphic function satisfying F'(0) = 1. The star
function of [ is defined by

(1.6) T*(re®, F) = — / T*(re, F)do (),
§2n—1

O2n—1

where 7e?® € H \ {0} and do denotes the Lebesgue surface area measure of the S**~! and 0, _;
its area.

Remark 1. In order to show the integrability of the counting function [V, it is not strictly necessary
to show its continuity. Indeed in case H : C" — C is an entire function then according to
Jensen’s formula, for a fixed » > 0, the positive function { — N(r,0, HC) is plurisubharmonic
(see Proposition 1.14 in [12]) and therefore L' on the unit sphere S**~! C C". Now, with respect
to the notations of Theorem 1, we have N(r,o00, F;) = N(r,0, H¢) for ¢ € $*"7'\ X and so
¢ — N(r,o00, F¢)is L' on S*" 1.

For a € {0,000} we set

1

O9n—1 Js2n—1

N(r,a; F) = N(r,a; F¢)do(Q).

The function N (r, a; F) can also be expressed as

(1.7) N(r,a; F) = / Mdt.
0

1

O2n—1
of F' (see [12] for instance). Notice that since F'(0) = 1

where n(t,a; F) = / n(t,a; Fr)do(C) is, for a = 0, the Lelong number of the zero set
§2n—1
T(r, F) = N(r,o00; F),
and
T*(—r, F) = N(r,0; F).

In the next proposition, we extend to several variables the main property of the star function
(1.6):

Proposition 1.1. Let ' : C" — C be a meromorphic function satisfying F(0) = 1. Then the
function T*(., F') is subharmonic on H.
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Proof. Let zy € H and let » > 0 such that the closed disc centered at 2, and radius r is included in
H. We have

1 ™ ) 1 ™ 1 .
) T* (20 + e, F)dh = o | o /SQn_1 T*(20 + 1€, F¢)do(¢)df
1 1o .,
= — T* (20 +re”, F)dOdo (()
Oopn—1 Js2n—1 2 o
1 *
> [ T Rydo(©
O2n—1 Js2n—1
= Y—V*(ZO7 F)

where the second equality follows from Theorem 1 and the inequality from the fact that the usual
Baernstein star function is subharmonic. Therefore 77(., F') is subharmonic on H. U

It is important to notice that the proof shows that 7*(., ') is harmonic on H if and only if
T*(., F¢) is harmonic for a.e. ¢ € S*"!. This fact will be used in the proof of Theorem 2.
Now, Theorem 1 and the continuity of the usual Baernstein star function implies directly that:

Proposition 1.2. Let F' : C" — C be a meromorphic function satisfying F (0) = 1. Then the
function T*(., F') is continuous on H.

Note that the continuity on {re? € C | # = 7} and on {re?? € C | § = 0} follows from (1.7).

2. ENTIRE FUNCTIONS OF SEVERAL VARIABLES WITH HARMONIC STAR FUNCTION

In the case of complex dimension one, as pointed out by A. Baernstein in [3], meromorphic

functions of the kind
o1 2) M- )

m

where 7, s, > 0 for all integer m > 0 with > % + ., -~ < oo, admit a harmonic star

function. In [1], the first author characterized all meromorphiésmfunctions with a harmonic star
function; see also the work of M. Essén and D. F. Shea in [9] for the case of meromorphic functions
of zero genus. More precisely, it was proved in [1] that if f : C — C is a meromorphic function
satisfying f(0) = 1 and such that its star function is harmonic then f can be written f(z) = P(e'z)

with

@.1) P() =[] (1+%> /];[ (1—%),

m

where § € R, v > 0 and 7, s,, > 0 for all m with > . % +> i < o0o. From a geometric
viewpoint, if the star function of f is harmonic then the zeros of f are distributed on one ray and
its poles on the opposite ray.

In this section, we characterise meromorphic functions F' : C* — C of several complex vari-
ables admitting a harmonic star function.
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Theorem 2. Let F' be a meromorphic function on C" with F(0) = 1. The star function T*(., F')
is harmonic on H if and only if there exist a meromorphic function P : C — C of the form (2.1)
and a vectorn = (n1,...,n,) € C" such that F(Z) = P(Z - n) forall Z € C", where we denote
Z-n=zm~+ ...+ 2o In particular if T*(., F') is harmonic on H, then the indeterminacy set
of F as defined in (1.5) is empty and for all { € S*"~! the star function T*(., F) is harmonic.

Remark 2. When F' is nonconstant the function P is given by a (rescaled) restriction of F' to the
complex line {z0F(0) | z € C}, where 0F(0) = (3—2(0), e %(O)).

We first establish the two following lemmas

Lemma 2.1. Let f : C — C be a meromorphic function of the form

. i0
2.2 =TT (1 [
) (=
withf € R, v > 0, rpn, Sy > 0 for all m and

1 1
ZE+Z;<OO'

m

ez
T'm

)

Assume furthermore that | has at least one zero or pole. Then

b (pop,

k k0
(2.3) F®(0) = dye™® = i

where dy, is real for all k > 0.

Proof. For z small enough we have

i) = e T U (22 ()

m k=1 k=1 Sm
. e -1 k+1 1 ezkz@
-3 (T )
k=1 m m m M
00 iko
= Zc(k‘)ek 2",
k=1
where . .
1) = — —
c(1) ’”;rm +) -
and for £ > 2
(_1)k+1 1
(k) = Z 1k ok

This tells us that for k > 1
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and so for k > 0

Dka(O) = Ele(k + 1)e' 10,

1 1
Since f(0) = land ¢(1) = v+ Z — + Z — > 0, and since we have at least one zero or pole,
T'm Sm

we have
F1(0) = ¢(1)e” # 0.

We set dy = 1, d; = ¢(1) € R. We now proceed by induction. Having f*)(0) = d,e*? with
dr € R for 0 < k < m, we have

NE

) = 3 (Voo

k=0 f
m
k=

_ Z <7Z> Kle(k + 1)ei®+Dog, _ eitm=h)6

0
— (Z (’Z) kle(k + 1)dm_k) eimt1f,

k=0
which proves the first equality in (2.3). The second equality follows directly. U

Lemma 2.2. Let F' be a meromorphic function on C" with F(0) = 1. Assume that its star func-
tion T*(., F') is harmonic on H. For any integer k > 0 let Py be the polynomial giving the
k-homogeneous part of the Taylor expansion of F' at the point 0. Then there exists a sequence
{¢k }k>2 of real numbers such that

Pk = Ck(Pl)k
forall k > 2.

Proof. Since T*(., F') is harmonic on H, then by the definition of 7*(., F') and the proof of Propo-
sition 1.1, for a.e. ¢ € S*!, T*(., F) is harmonic on H. Thus by Theorem 1 in [1], for a.e.
¢ € $*1, F has the form (2.2) in Lemma 2.1. So we have

FM(0) = di(Q)e™,

with dy(¢) € R forall k& > 0 for a.e. ¢ € S*"!, and thus for all ( € S**~! by continuity of dy,(¢).
Forz € Cand a = (v, -+ , o) € C*\ {0}, define

Fo(2) = F(agz, -+, auz).

Since F,(z) = F « (]|a||z), the function F, has the form (2.2) of Lemma 2.1 and so Fo([k)(O) isa

Tl

real multiple of (F/(0))". In particular, note that if o — F,(0) is identically equal to zero then F
must be identically equal to 1. The homogeneous polynomial P is given by

2=y 200

|J|=k
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where, for a multiindex J = (ji,- - ,jn) € N", we write J! = jil--- .|, Z7 = 2'2f* - 20

and 0;F(0) = F(0). Therefore, we have

J1 in
0z 0z

F.(z) = ZPk(za)

a;F0),
= > > Jf )(za)

k |J|=k
9 F0O) ;) &
k |J|=k

It follows that 1l
F®0) =) ﬁaJF(O)aJ = k! Py(c).

|J|=k
P, FF o
Since the function o« — (P1k<((j))) - = R(F ((O)) TP is meromorphic and real valued, it is constant.
This concludes the proof of Lemma 2.2. U

Remark 3. It follows from the proof of Lemma 2.2 that it is enough to assume the following: there
exists a subset B C S?"~! of positive measure such that for all ¢ € B, T*(., F;) is harmonic on

Pk(oz)

H. Indeed this implies that the meromorphic function o — W is real valued for all « € C"
1\

such that H%H € B, which is enough to show that it is constant.

We are now able to prove Theorem 2.

Proof of Theorem 2. Let F be a meromorphic function on C" sastifying /'(0) = 1. For any k € N
let P, be the polynomial giving the k-homogeneous part of the Taylor expansion of F' at the point
0; in particular, the Taylor series of [ is given by >, . P. If furthermore I is such that 7(., F)
is harmonic on H, then by Lemma 2.2, there exists a sequence {cj }x>2 of real numbers such that

(2.4) Py, = ci(P)"

for all k > 2. For j = 1,...,n define n; = %(O), so that P|(Z) = anzj, and set n =
J =1
(7]17 ce 77]7L)

Suppose first that 7 = 0. Then P, = 0, and by (2.4) we also have P, = 0 for all £ > 2. It follows
that F' is identically equal to 1, and defining P(z) = 1 we get P(Z - n) = P(0) = 1 = F(Z) for
all Z € C™.

Suppose then that 17 # 0. Without loss of generality, up to a permutation of the coordinates we

can assume that 77; # 0. We define a meromorphic function P as

P(z):F(i,o,...,()).

T
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We need to show that F'(Z) = P(Z - n) for all Z € C". We check this identity by verifying that
the Taylor expansions of the two functions about 0 coincide. On the one hand, using Lemma 2.2,
we have the polynomial identity

3:]]' <Zmz]> = ¢y, Z J|77JZJ

| J|=k | J|=k

which implies that
0;F(0) = kleyn”.
Using now the chain rule iteratively and denoting G(Z) = P(Z - n), for any multiindex J =
(J1,- -+, Jn) € N with |J| = k > 2 we have
0,G(0) = PO )i -y = PO (0)n”.

To conclude the proof we just need to check that P¥)(0) = k!c;. First, we observe that P'(0) = 1

and o
1
PR —— (0)

for all integer £ > 0 by the chain rule. Using Lemma 2.2 again, we can write

1 OFF z z g
k,—nkW(O)zk =P, <E,0, . ,0> =cp <P1 <E,0, . 70)> = 2",
sl 1

P®(0) = kley
for all integers k£ > 2. It follows that 0, F'(0) = 0;G(0) for all J € N", hence F(Z) = G(Z) =
P(Z -n).
Finally, if ¢ - n # 0 and T7(., F;) is harmonic then 7%(., P(2¢ - 1)), and hence T7*(., P), is
harmonic. It follows by [1] that P has the required form. U

P®(0) =

Hence

Remark 4. According to the proof of Theorem 2 and Remark 3, if we replace the harmonicity of
T*(., F) by the weaker statement that there exists a subset B C S?"~! of positive measure such
that for all ¢ € B, T*(., F¢) is harmonic on H, the theorem still holds.

Example 2. It is not enough to assume that 7*(., F;) is harmonic on H for finitely many ¢ € S*"~1.

For instance in C? consider (; = (a1, 1), -+ ,(y = (a1, 1) € S? and define, for j = 1,--- , N,
the linear function L; : C* — C L;(z1, 22) = jz1 — aj22. Then the function F': C* — C defined
by
N
F(Zl, 22) = HLj(Zl,ZQ) + ].,
j=1

is meromorphic with F'(0) = 1. Moreover I, = 1 hence T*(., F,) is harmonic for j = 1,--- | N

but F' is not of the form of Theorem 2.

Y

Example 3. Note that if 77(., F;;) is harmonic on H then for a.e. ¢ € S*"~! then the zeros of F,
all belong to the same ray. In Theorem 2, it is not enough to assume that for a.e. ( € S**~! the
zeros of [ just belong to the same line. For instance consider any polynomial P : C — C with
P(0) = 1 and with zeros on the same line but not on the same ray. Let n € C™ \ {0}. Then the



THE STAR FUNCTION FOR MEROMORPHIC FUNCTIONS OF SEVERAL COMPLEX VARIABLES 13

function F'(Z) = P(Z - n) is such that the zeros of F; for all ¢ € S**~! are on the same line but is
not of the form of Theorem 2.
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