
RIEMANN-HILBERT PROBLEMS WITH CONSTRAINTS

FLORIAN BERTRAND AND GIUSEPPE DELLA SALA

Abstract. This paper is devoted to Riemann-Hilbert problems with constraints.
We obtain results characterizing the existence of solutions as well as the dimension
of the solution space in terms of certain indices. The results of this paper are
particularly adapted to the study of stationary discs attached to CR manifolds.

Introduction

Very recently, the theory of stationary discs developed by Lempert [12] (see also
[11, 5, 13]), has found important applications to the study of jet determination
problems for CR maps between finitely smooth real submanifolds [1, 2, 3, 4]. The
existence and geometric properties of stationary discs are deeply connected to non-
linear Riemann-Hilbert problems. This connection was developed in the seminal
works of Forstnerič [7] and Globevnik [9, 10] in their study of analytic discs attached
to totally real submanifolds.

In several applications [2, 4], one needs to study families of stationary discs passing
through a prescribed point; in such cases, standard techniques developed in [7, 9, 10]
cannot be applied directly and versions of Riemann-Hilbert problems with pointwise
constraints are needed. To the best of our knowledge, relevant results are not covered
in the literature on Riemann-Hilbert problems. The present paper is devoted to
this problem and our main results Theorem 2.1 and Theorem 2.4 provide the tools
required for the construction of stationary discs with pointwise constraints as in
[2, 4].

Acknowledgments. Research of the two authors was supported by a fellowship at
the Center for Advanced Mathematical Sciences (CAMS). The second author was
partially supported by the Austrian Science Fund FWF grant P24878 N25.

1. Preliminaries

Let ∆ be the unit disc in C and let b∆ be its boundary.
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1.1. Function spaces. Let k ≥ 0 be an integer and let 0 < α < 1. We denote
by Ck,α = Ck,α(b∆,R) the space of real-valued functions defined on b∆ of class Ck,α

endowed with its usual norm. We define Ck,αe (resp. Ck,αo ) to be the closed subspace
of Ck,α given by the even (resp. odd) functions, that is, the functions v ∈ Ck,α such

that v(−ζ) = v(ζ) (resp. v(−ζ) = −v(ζ) ) for all ζ ∈ b∆. We set Ck,αC = Ck,α + iCk,α.

Hence v ∈ Ck,αC if and only if Re v, Im v ∈ Ck,α. We denote by Ak,α the subspace of

Ck,αC consisting of functions f : ∆→ C, holomorphic on ∆ with trace on b∆ belonging

to Ck,αC .

Let m ≥ 0 be an integer. We define Ak,α0m to be the subspace of Ck,αC consisting of
the functions that can be written as (1 − ζ)mf , with f ∈ Ak,α. Finally, we denote

by Ck,α0m the subspace of Ck,α consisting of elements that can be written as (1− ζ)mv

with v ∈ Ck,αC .

For technical reasons we will also need the following subspaces of Ck,αC

Rm = {v ∈ Ck,αC | v(ζ) = (−1)mζ−mv(ζ) ∀ ζ ∈ b∆}.

Their relation with Ck,α0m is given by the following elementary lemma

Lemma 1.1.

(i) The map τm : Ck,α0m → C
k,α
C defined by τm((1 − ζ)mv) = v is an isomorphism

between Ck,α0m and Rm;
(ii) if m = 2m′ is even, the map v 7→ ζm

′
v induces an isomorphism between Rm

and R0 = Ck,α;
(iii) if m = 2m′ + 1 is odd, the map v 7→ ζm

′
v induces an isomorphism between Rm

and R1.

Furthermore, if m is odd the map v(ζ) 7→ iζmv(ζ2) sends Rm isomorphically to Ck,αo .

Proof. A function v ∈ Ck,αC is in the image of τm exactly when (1− ζ)mv ∈ Ck,α, that
is,

(1− ζ)mv = (1− ζ)mv = (−1)mζ−m(1− ζ)mv,

which gives the first point.
If m = 2m′ and v ∈ Rm, u = ζm

′
v, we have

u = ζm
′
v = ζm

′
ζ−2m′v = ζ−m

′
v = u,

hence u ∈ Ck,α. Note that this series of equalities shows that the map v 7→ ζm
′
v is

onto.
If m = 2m′ + 1 and v ∈ Rm, u = ζm

′
v, we have

u = ζm
′
v = −ζm′ζ−2m′+1v = −ζζ−m′v = −ζu,

hence u ∈ R1.
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Finally, letting u(ζ) = iζmv(ζ2) with v ∈ Rm and m odd we have

u(ζ) = iζmv(ζ2) = −iζmζ−2mv(ζ2) = −iζ−mv(ζ2) = u(ζ),

and furthermore u(−ζ) = (−1)mu(ζ) = −u(ζ), hence u ∈ Ck,αo .
We now show that this correspondence is an isomorphism by giving an explicit

expression of the inverse. Write any u ∈ Ck,αo as

u(ζ) =
∑
j∈Z

ajζ
2j+1 with aj = a−j−1 for all j ∈ Z,

and define
v(ζ) = −

∑
`∈Z

ia`+(m−1)/2ζ
`.

Then
u(ζ)/iζm = −

∑
j∈Z

iajζ
2j−m+1 = −

∑
`∈Z

ia`+(m−1)/2ζ
2` = v(ζ2),

that is, u(ζ) = iζmv(ζ2). Moreover

−ζ−mv(ζ) = −
∑
`∈Z

ia`+(m−1)/2ζ
−`−m =

= −
∑
h∈Z

ia−h−(m+1)/2ζ
h = −

∑
h∈Z

iah+(m−1)/2ζ
h = v(ζ)

which shows that v ∈ Rm.
�

1.2. Birkhoff factorization and indices. We refer, for instance, to the monogra-
phy of N.P. Vekua [14] for a complete exposition on the Birkhoff factorization and
partial indices. We will recall the basic facts that we need. Let N > 0 be an integer.
We denote by GLN(C) the general linear group on CN . Let G : b∆→ GLN(C) be a

smooth map. One considers a Birkhoff factorization of −G(ζ)
−1
G(ζ), that is, some

smooth maps B+ : ∆̄ → GLN(C) and B− : (C ∪∞) \ ∆ → GLN(C) such that for
all ζ ∈ b∆

−G(ζ)
−1
G(ζ) = B+(ζ)


ζκ1 (0)

ζκ2

. . .
(0) ζκN

B−(ζ)

where B+ and B− are holomorphic on ∆ and C \ ∆ respectively. According to J.
Globevnik (see Lemma 5.1 in [9]), one can find B+ and B− in such a way that

B+ = Θ and B− = Θ−1, where Θ : ∆̄ → GLN(C) is a smooth map. The integers
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κ1, . . . , κN are called the partial indices of −G−1
G and the Maslov index of −G−1

G is
their sum κ =

∑N
j=1 κj. The partial indices are unique up to order (see for instance

Section 3 in [9]). We also recall that the Maslov index coincides with the winding

number at the origin of the map det
(
−G−1

G
)

and hence is even.

2. Main results

2.1. Linear Riemann-Hilbert problems with homogeneous pointwise con-
straints.

Theorem 2.1. Let k,m ≥ 0 be integers and let 0 < α < 1. Consider the following
operator

L :
(
Ak,α0m

)N
→
(
Ck,α0m

)N
defined by

L(f) = 2Re
[
Gf
]
,

where G : b∆ → GLN(C) is smooth. Denote by κ1, . . . , κN and by κ the partial

indices and the Maslov index of −G−1
G. Then

(i) The map L is onto if and only if κj ≥ m− 1 for all j = 1, · · · , N .
(ii) Assume that L is onto. Then the kernel of L has real dimension κ+N −Nm.

The proof will be given in Section 3.

Remark 2.2. In the context of Theorem 2.1, in case the partial indices −G−1
G are

greater than or equal to m− 1, it follows that L is a Fredholm operator of Fredholm

index κ+N −Nm, where again κ is the Maslov index of −G−1
G.

Remark 2.3. The Riemann-Hilbert problem has important applications to the study
of analytic discs attached to non degenerate real submanifolds of CN [12, 7, 9, 5,
6], and in particular to stationary discs; these are special analytics discs attached
to a given hypersurface M ⊆ Cn+1 which lift to the cotangent bundle as discs -
with a pole of order at most one - attached to the conormal bundle of M . In
case M is Levi-degenerate, its conormal bundle is no longer totally real and admits
complex tangencies [15]; the existence of smooth stationary discs attached to such
a hypersurface and its pertubations is therefore unclear. In [3], we have introduced
generalized stationary discs by allowing the pole of their lifts to be of higher order.
In order to construct generalized stationary discs attached to small pertubations of a
Levi-degenerate hypersurface M ⊆ Cn+1, one considers the corresponding Riemann-
Hilbert problem whose linearization along an initial disc is of the form f 7→ 2Re [Gf ]
where the matrix map G(ζ) is no longer invertible on b∆ (since the lift of the initial
disc passes through complex points). A careful study of G shows that one can



RIEMANN-HILBERT PROBLEMS WITH CONSTRAINTS 5

factor out the singularities of G and associate a related Riemann-Hilbert problem

f 7→ 2Re [G̃f ], where G̃(ζ) is now invertible on b∆ and where f has new pointwise
constraints. For more details and a clear application of Theorem 2.1, the reader is
invited to see Theorem 4.2 in [4] and its proof.

2.2. Linear Riemann-Hilbert problems with pointwise constraints. Let G :
b∆→ GLN(C) be a smooth map of the form

G(ζ) =


G1(ζ) (∗)

G2(ζ)
. . .

(0) Gr(ζ)

 ,

where Gj(ζ) ∈ GLNj(C) for all j = 1, · · · , r, for all ζ ∈ b∆ and where Nj’s are
positive integers such that their sum is N . Let k,m1, . . . ,mr ≥ 0 be integers and let
0 < α < 1. Consider the following operator

L :
r∏
l=1

(
Ak,α

0mj

)Nj
→

r∏
l=1

(
Ck,α

0mj

)Nj
defined by

L(f) = 2Re
[
Gf
]
.

Note that we are implicitly assuming that G is such that L

(∏r
l=1

(
Ak,α

0mj

)Nj)
⊂∏r

l=1

(
Ck,α

0mj

)Nj
. Denote by G̃(ζ) the following matrix

G̃(ζ) =


G1(ζ) (0)

G2(ζ)
. . .

(0) Gr(ζ)


and by L̃ the corresponding operator. For j = 1, · · · , r we denote by κjl , l =

1, · · · , Nj, the partial indices of −Gj
−1
Gj and by κ the Maslov index of −G−1

G

and of −G̃
−1

G̃. Note that the fact that L̃ is onto implies that L is onto and also that
the kernels of L and L̃ are of the same dimension. A direct application of Theorem
2.1 gives:

Theorem 2.4. Under the above assumptions:

(i) If κjl ≥ mj − 1 for all l = 1, · · · , Nj and all j = 1, · · · , r then the map L is
onto.
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(ii) Assume that L is onto. Then the kernel of L has real dimension κ + N −∑r
j=1Njmj.

Remark 2.5. In [2], the first author, L. Blanc-Centi and F. Meylan construct classical
stationary discs attached to pertubations of a given non-degenerate generic quadric
and satisfying a pointwise constraint (the latter is essential for applications to jet
determination problems). This construction is done using Theorem 2.4 (see Theorem
3.1 in [2] and its proof for more details).

3. Proof of Theorem 2.1

We start with a few more observations. Following [10], one can find a smooth
map V : b∆ → GLN(R) such that V G = M(−iΘ)−1, where M has a special block-
diagonal form (see (3.1)), where Θ : ∆ → GLN(C) is smooth and holomorphic on
∆, and in particular

−G(ζ)
−1
G(ζ) = Θ(ζ)M(ζ)−1M(ζ)Θ(ζ)−1

= Θ(ζ)


ζκ1 (0)

ζκ2

. . .
(0) ζκN

Θ(ζ)
−1
.

Define the operator

L̃ :
(
Ak,α0m

)N
→
(
Ck,α0m

)N
by setting

L̃(f) = 2Re [Mf ] .

Since Θ : ∆ → GLN(C) is smooth and holomorphic on ∆, the map (iΘ)−1 is an

isomorphism of
(
Ak,α0m

)N
onto itself. Moreover since V is valued in GLN(R), the

map
(
Ck,α0m

)N
→
(
Ck,α0m

)N
defined by ϕ 7→ Vϕ is also an isomorphism. Therefore

the kernels of L and L̃ are of the same dimension and L is onto if and only if L̃ is
onto; the operators L and L̃ are both Fredholm and of the same index. We will prove
Theorem 2.1 for L̃.

We first prove (i). Since κ is even, the number of odd partial indices is even.
Without loss of generality, suppose that κj is odd for j = 1, · · · , 2s and that κj is
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even for j = 2s+ 1, · · · , N . According to [10], the matrix M can be written as

(3.1) M(ζ) =



P1(ζ) (0)
. . .

Ps(ζ)

ζ−
κ2s+1

2

. . .

(0) ζ−
κN
2


,

where

Pj(ζ) =

(
1 + ζ −i(1− ζ)
i(1− ζ) 1 + ζ

)(
ζ−

κ2j−1+1

2 0

0 ζ−
κ2j+1

2

)
for j = 1, · · · , s. Note that in case there are no odd partial indices, the matrix M(ζ)

is diagonal with entries ζ−
κj
2 . Part (i) is a consequence of the following two lemmas

Lemma 3.1. Let r be an integer. Consider the operator L : Ak,α0m → C
k,α
0m defined by

L(f) = 2Re [ζ−rf ]|b∆.

Then L is onto if and only if 2r ≥ m− 1.

Proof. Let ϕ ∈ Ck,α0m . Write ϕ = (1− ζ)mv where v ∈ Rm (see Lemma 1.1). We need
to study the following equation:

ζ−rf + ζrf = ϕ

for f ∈ Ak,α0m . Writing f = (1− ζ)mg with g ∈ Ak,α reduces to

(3.2) ζ−rg + (−1)mζr−mg = v.

We distinguish two cases:
First case: m = 2m′ is even. In such case, Equation (3.2) is equivalent to

(3.3) ζ−(r−m′)g + ζr−m
′
g = ζm

′
v.

Notice that u → ζm
′
u maps Rm isomorphically to Ck,α, see Lemma 1.1. Equation

(3.3) is classical and was treated by J. Globevnik in [10] for instance (see also [8, 14,
16]). Equation (3.3) is solvable for any function v ∈ Rm if and only if r −m′ ≥ 0.
Second case: m = 2m′ + 1 is odd. In this case, Equation (3.2) is equivalent to

(3.4) ζ−(r−m′)g − ζr−m′ζg = ζm
′
v.

Set u = ζm
′
v. By Lemma 1.1 follows that u ∈ R1. We write u = u′ + u′′, where

u′ = P(u) ∈ Ak,α, P being the Szegö projection. Since u = −ζu, we have u′′ = −ζu′.
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If r −m′ ≥ 0, then g = ζr−m
′
u′ ∈ Ak,α and satisfies (3.4). If r −m′ < 0, then∫

ζ−(r−m′)g dθ =

∫
ζr−m

′−1g dθ = 0

and so, for instance, 1− ζ ∈ R1 is not in the image. �

Lemma 3.2. Let r1, r2 be integers. Set

P (ζ) =

(
1 + ζ −i(1− ζ)
i(1− ζ) 1 + ζ

)(
ζ−r1 0

0 ζ−r2

)
.

Consider the operator T :
(
Ak,α0m

)2

→
(
Ck,α0m

)2

defined by

T (f) = 2Re [Pf ]|b∆.
Then T is onto if and only if 2r1 ≥ m and 2r2 ≥ m.

Proof. Let ϕ ∈
(
Ck,α0m

)2

. Write ϕ = (1− ζ)mv where v ∈
(
Ck,αC

)2

and f = (1− ζ)mg

with g ∈
(
Ak,α

)2
. We need to study the following equation:

Pg + (−1)mζ−mPg = v.

First case: m = 2m′ is even. In that case, we have

(3.5) ζm
′
Pg + ζ−m

′
Pg = ζm

′
v,

which was treated by J. Globevnik [10]. In particular, (3.5) admits a solution if and
only if r1 −m′ ≥ 0 and r2 −m′ ≥ 0.
Second case: m = 2m′ + 1 is odd. We have

ζm
′
Pg − ζ−m′−1Pg = ζm

′
v.

Following J. Globevnik, we make the substitution ζ = ξ2 and get

ξmP (ξ2)g(ξ2)− ξ−mP (ξ2)g(ξ2) = ξmv(ξ2),

After multiplying by i

2Re
[
ξmP (ξ2)ig(ξ2)

]
= iξmv(ξ2),

which becomes

(3.6) 4Re

[(
iξ−(2r1−m−1)g1(ξ2)
iξ−(2r2−m−1)g2(ξ2)

)]
= i

(
Re ξ Im ξ
−Im ξ Re ξ

)
ξmv(ξ2).

Notice that, according to Lemma 1.1, whenever u ∈ Rm then 2iξmu(ξ2) ∈ Ck,αo and

that moreover the map u 7→
(

Re ξ Im ξ
−Im ξ Re ξ

)
u is an isomorphism between (Ck,αo )2
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and (Ck,αe )2. Thus, (3.6) reduces to a pair of one-dimensional problems

ξ−(2rj−m−1)gj(ξ
2) + ξ2rj−m−1gj(ξ

2) = uj(ξ)

with uj ∈ Ck,αe , j = 1, 2. Writing uj(ξ) = u′j(ξ
2) with u′j ∈ Ck,α, this equation is in

turn equivalent to

ζ−(2rj−m−1)/2gj(ζ) + ζ(2rj−m−1)/2gj(ζ) = u′j(ζ).

This problem is of the form considered in Lemma 3.1, and the surjectivity is equiv-
alent to 2r1 −m − 1 ≥ 0, and 2r2 −m − 1 ≥ 0. Since m is odd, this concludes the
proof. �

We now prove (ii). Assume that

2Re [Mf ] = 0

on b∆. The disc f ∈
(
Ak,α0m

)N
satisfies

f = −M−1Mf = −


ζκ1 (0)

ζκ2

. . .
(0) ζκN

f .

The determination of the kernel thus reduces to the one dimensional problem

(3.7) f + ζ lf = 0.

for f = (1− ζ)mg ∈ Ak,α0m and l ≥ m− 1. This equation can be written as

g + (−1)mζ l−mg = 0.

It is immediate and classical (see for instance [8, 10, 14, 16]) that solutions are of the

form g(ζ) =
∑l−m

k=0 akζ
k with ak = (−1)m+1al−m−k for k = 0, · · · , l −m. Therefore

the space of solutions of (3.7) has real dimension l + 1 −m. This ends the proof of
Theorem 2.1.

�

Remark 3.3. In relation with Theorem 2.1 and its proof, note the work of M. Černe
[6] in the framework of non-trivial bundles over the boundary of a given disc, that is
when the corresponding Maslov index is odd.
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