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ABSTRACT. Let D be aJ-pseudoconvex region in a smooth almost complex manifold(M, J) of real dimen-
sion four. We construct a local peakJ-plurisubharmonic function at every pointp ∈ bD of finite D’Angelo
type. As applications we give local estimates of the Kobayashi pseudometric, implying the local Kobayashi
hyperbolicity ofD at p. In case the pointp is of D’Angelo type less than or equal to four, or the approachis
nontangential, we provide sharp estimates of the Kobayashipseudometric.
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3.4. Hölder extension of diffeomorphisms 18
4. Sharp estimates of the Kobayashi pseudometric 20
4.1. The scaling method 21
4.2. Complete hyperbolicity in D’Angelo type four condition 24
4.3. Regions with noncompact automorphisms group 27
4.4. Nontangential approach in the general setting 27
5. Appendix : Convergence of the structures involved by the scaling method. 30
References 34

INTRODUCTION

Analysis on almost complex manifolds recently became a fondamental tool in symplectic geometry with
the work of M.Gromov in [15]. The local existence of pseudoholomorphic discs proved by A.Nijenhuis-
W.Woolf in their paper [21], allows to define the Kobayashi pseudometric, which is crucial for local analysis.

In the present paper we study the behaviour of the Kobayashi pseudometric of aJ-pseudoconvex re-
gion of finite D’Angelo type in an almost complex manifold(M,J) of dimension four. Finite D’Angelo
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type appeared naturally in complex manifolds when considering the boundary behaviour of the∂ operator
(see [7],[8],[18],[4]). Moreover on complex manifolds of dimension two, the D’Angelo type unifies many
type conditions as the finite regular type. Finite regular type was recently characterized intrinsically by J.-
F.Barrault-E.Mazzilli [1] by means of Lie brackets, which generalizes in the non integrable case, a result of
T.Bloom-I.Graham [4].

Our main result is the construction of a local peakJ-plurisubharmonic function on pseudoconvex regions
provided by Theorem A (see also Theorem 2.6):

Theorem A. LetD = {ρ < 0} be a domain of finite D’Angelo type in an almost complex manifold (M,J)
of dimension four. We suppose thatρ is aC2 defining function ofD, J-plurisubharmonic on a neighborhood
of D. Letp ∈ ∂D be a boundary point. Then there exists a local peakJ-plurisubharmonic function atp.

Theorem A allows to localize pseudoholomorphic discs and toobtain lower estimates of the Kobayashi
pseudometric which provide the local Kobayashi hyperbolicity of J-pseudoconvex regions of D’Angelo
type 2m (Proposition 3.4 and Proposition 3.10). As an application we prove the1/2m-Hölder extension
of biholomorphisms up to the boundary (Proposition 3.9). Inorder to obtain sharp lower estimates of the
Kobayashi pseudometric similar to those given in complex manifolds by D.Catlin [5] (see also [3]), we
consider a natural scaling method. However this reveals thefact that for a domain of finite D’Angelo type
greater than four, the sequence of almost complex structures obtained by any polynomial scaling process
does not converge generically to the standard structure; this is presented in the Appendix. This may be
related to the fact that finite D’Angelo type is based on purely complex considerations, as the boundary
behaviour of the Cauchy-Riemann equations. Hence we provide sharp lower estimates of the Kobayashi
pseudometric for a region of finite D’Angelo type four (see also Theorem 4.1):

Theorem B. Let D = {ρ < 0} be a relatively compact domain of finite D’Angelo type less than or equal
to four in an almost complex manifold(M,J) of dimension four, whereρ is aC2 defining function ofD, J-
plurisubharmonic on a neighborhood ofD. Then there is a positive constantC with the following property:
for everyp ∈ D and everyv ∈ TpM there exists a diffeomophismΦp∗ in a neighborhoodU of p, such that:

K(D,J) (p, v) ≥ C

(
| (dpΦp∗v)1 |

|ρ (p) |
1

4

+
| (dpΦp∗v)2 |

|ρ (p) |

)
.

We point out that the approach we use, based on some renormalization principle of pseudoholomorphic
discs, gives also a different proof of precise lower estimates obtained by H.Gaussier-A.Sukhov in [12]
for strictly J-pseudoconvex domains in arbitrary dimension. As an application of Theorem B, we obtain
the (local) complete hyperbolicity ofJ-pseudoconvex regions of D’Angelo type less than or equal tofour
(Corollary 4.5) and we give a Wong-Rosay theorem for regionswith noncompact automorphisms group
(Corollary 4.6).

Finally, in order to obtain precise estimates near a point ofarbitrary finite D’Angelo type, we are interested
in the nontangential behaviour of the Kobayashi pseudometric (see also Theorem 4.7):

Theorem C. LetD = {ρ < 0} be a domain of finite D’Angelo type in an almost complex manifold (M,J)
of dimension four, whereρ is a C2 defining function ofD, J-plurisubharmonic on a neighborhood ofD.
Let q ∈ ∂D be a boundary point of D’Angelo type2m and letΛ ⊂ D be a cone with vertex atq and axis
the inward normal axis. Then there exists a positive constant C such that for everyp ∈ D ∩ Λ and every
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v = vn + vt ∈ TpM :

K(D,J) (p, v) ≥ C

(
|vn|

|ρ (p) |
1

2m

+
|vt|

|ρ (p) |

)
,

wherevn andvt are the normal and the tangential parts ofv with respect toq.

1. PRELIMINARIES

We denote by∆ the unit disc ofC and by∆r the disc ofC centered at the origin of radiusr > 0.

1.1. Almost complex manifolds and pseudoholomorphic discs.An almost complex structureJ on a real
smooth manifoldM is a (1, 1) tensor field which satisfiesJ2 = −Id. We suppose thatJ is smooth. The
pair (M,J) is called analmost complex manifold. We denote byJst the standard integrable structure onC

n

for everyn. A differentiable mapf : (M ′, J ′) −→ (M,J) beetwen two almost complex manifolds is said
to be(J ′, J)-holomorphicif J (f (p)) ◦ dpf = dpf ◦ J ′ (p) , for everyp ∈ M ′. In caseM ′ = ∆ ⊂ C, such
a map is called apseudoholomorphic disc. If f : (M,J) −→ M ′ is a diffeomorphism, we define an almost
complex structure,f∗J , onM ′ as the direct image ofJ by f :

f∗J (q) := df−1(q)f ◦ J
(
f−1 (q)

)
◦ dqf

−1,

for everyq ∈ M ′.
The following lemma (see [12]) states that locally any almost complex manifold can be seen as the unit

ball of C
n endowed with a small smooth pertubation of the standard integrable structureJst.

Lemma 1.1. Let (M,J) be an almost complex manifold, withJ of classCk, k ≥ 0. Then for every
point p ∈ M and everyλ0 > 0 there exist a neighborhoodU of p and a coordinate diffeomorphism
z : U → B centered ap (ie z(p) = 0) such that the direct image ofJ satisfiesz∗J (0) = Jst and
||z∗ (J) − Jst||Ck(B̄) ≤ λ0.

This is simply done by considering a local chartz : U → B centered ap (ie z(p) = 0), composing it with
a linear diffeomorphism to insurez∗J (0) = Jst and dilating coordinates.

So letJ be an almost complex structure defined in a neighborhoodU of the origin inR
2n, and such that

J is sufficiently closed to the standard structure in uniform norm on the closureU of U . TheJ-holomorphy
equation for a pseudoholomorphic discu : ∆ → U ⊆ R

2n is given by

(1.1)
∂u

∂y
− J (u)

∂u

∂x
= 0.

According to [21], for everyp ∈ M , there is a neighborhoodV of zero inTpM , such that for every
v ∈ V , there is aJ-holomorphic discu satisfyingu (0) = p andd0u (∂/∂x) = v.

1.2. Levi geometry. Let ρ be aC2 real valued function on a smooth almost complex manifold(M,J) . We
denote bydc

Jρ the differential form defined by

dc
Jρ (v) := −dρ (Jv) ,

wherev is a section ofTM . TheLevi formof ρ at a pointp ∈ M and a vectorv ∈ TpM is defined by

LJρ (p, v) := d (dc
Jρ) (p) (v, J(p)v) = ddc

Jρ(p) (v, J(p)v) .

In case(M,J) = (Cn, Jst), thenLJstρ is, up to a positive multiplicative constant, the usual standard Levi
form :

LJstρ(p, v) = 4
∑ ∂2ρ

∂zj∂zk
vjvk.
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We investigate now how close is the Levi form with respect toJ from the standard Levi form. Forp ∈ M
andv ∈ TpM , we easily get :

(1.2) LJρ (p, v) = LJstρ(p, v) + d(dc
J − dc

Jst
)ρ(p)(v, J(p)v) + ddc

Jst
ρ(p)(v, J(p) − Jst)v).

In local coordinates(t1, t2, · · · , t2n) of R
2n, (1.2) may be written as follows

LJρ (p, v) = LJstρ(p, v) + tv(A − tA)J(p)v + t(J(p) − Jst)vDJstv +
t(J(p) − Jst)vD(J(p) − Jst)v(1.3)

where

A :=

(
∑

i

∂u

∂ti

∂Ji,j

∂tk

)

1≤j,k≤2n

and D :=

(
∂2u

∂tj∂tk

)

1≤j,k≤2n

.

Let f be a(J ′, J)-biholomorphism from(M ′, J ′) to (M,J). Then for everyp ∈ M and everyv ∈ TpM :

LJ ′ρ (p, v) = LJρ ◦ f−1 (f (p) , dpf (v)) .

This expresses the invariance of the Levi form under pseudobiholomorphisms.
The next proposition is useful in order to compute the Levi form (see [10], [16] and [17]).

Proposition 1.2. Letp ∈ M andv ∈ TpM . Then

LJρ (p, v) = ∆ (ρ ◦ u) (0) ,

whereu : ∆ → (M,J) is anyJ-holomorphic disc satisfyingu (0) = p andd0u (∂/∂x) = v.

Proposition 1.2 leads to the following proposition-definition :

Proposition 1.3. The two statements are equivalent :

(1) ρ ◦ u is subharmonic for anyJ-holomorphic discu : ∆ → M .
(2) LJρ(p, v) ≥ 0 for everyp ∈ M and everyv ∈ TpM .

If one of the previous statements is satisfied we say thatρ is J-plurisubharmonic. We say thatρ is strictly
J-plurisubharmonicif LJρ(p, v) is positive for anyp ∈ M and anyv ∈ TpM \ {0}. J-plurisubharmonic
functions play a very important role in almost complex geometry : they give attraction and localization
properties for pseudoholomorphic discs. For this reason the construction ofJ-plurisubharmonic functions
is crucial.

Similarly to the integrable case, one may define the notion ofpseudoconvexity in almost complex mani-
folds. LetD be a domain in(M,J). We denote byT J∂D := T∂D ∩ JT∂D theJ-invariant subbundle of
T∂D.

Definition 1.4.

(1) The domainD is J-pseudoconvex (resp. it strictlyJ-pseudoconvex) ifLJρ(p, v) ≥ 0 (resp.> 0)
for anyp ∈ ∂D andv ∈ T J

p ∂D (resp.v ∈ T J
p ∂D \ {0}).

(2) A J-pseudoconvex region is a domainD = {ρ < 0} where ρ is a C2 defining function,J-
plurisubharmonic on a neighborhood ofD.

We recall that a defining function forD satisfiesdρ 6= 0 on∂D.
The following Lemma is useful in order to compute the Levi form of some functions.



PSEUDOCONVEX REGIONS OF FINITE D’ANGELO TYPE 5

Lemma 1.5. Assume thatJ is a diagonal almost complex structure onR
4 that coincides with the standard

structureJ onC × {0}. To fix notations we suppose that its matricial representation is given by :

J =




a1 b1 0 0
c1 −a1 0 0
0 0 a2 b2

0 0 c2 −a2


 .

Then the Levi form of some smooth real valued functionf at a pointz = (z1, z2) and v = (1, 0, 0, 0) is
equal to

LJf (z, v) = −c1∆1f + O (|z2|)).

where∆1f :=
∂2f

∂x1∂x1
+

∂2f

∂y1∂y1
.

Proof. Let us compute the Levi form of some smooth real valued function f at a pointz = (z1, z2) and
v = (1, 0, 0, 0) :

c−1
1 LJf (z, v) = −∆1f +

[
−2

∂2f

∂x1∂y1
a1 +

∂2f

∂x1∂x1
(1 + b1) +

∂2f

∂y1∂y1
(c1 − 1)

]
+

∂f

∂x1

[
∂b1

∂x1
−

∂a1

∂y1

]
+

∂f

∂y1

[
∂a1

∂x1
+

∂c1

∂y1

]

= −∆1f +

[
−2

∂2f

∂x1∂y1
O (|z2|) +

∂2f

∂x1∂x1
O (|z2|) +

∂2f

∂y1∂y1
O (|z2|)

]
+

∂f

∂x1
O (|z2|) +

∂f

∂y1
O (|z2|)

= −∆1f + O (|z2|) .

�

2. CONSTRUCTION OF A LOCAL PEAK PLURISUBHARMONIC FUNCTION

This section is devoted to the proof of Theorem A (see Theorem2.6).

2.1. Pseudoconvex regions of finite D’Angelo type.In this subsection we describe a pseudonconvex re-
gion on a neighborhood of a boundary point of finite D’Angelo type. We point out that all our considerations
are purely local. Assume thatD = {ρ < 0} is aJ-pseudoconvex region inC2 and that the structureJ is
defined on a fixed neighborhoodU of D. We suppose that the origin is a boundary point ofD.

Definition 2.1. Let u : (∆, 0) →
(
R

4, 0, J
)

be aJ-holomorphic disc satisfyingu (0) = 0. The order of
contactδ0 (∂D, u) with ∂D at the origin is the degree of the first term in the Taylor expansion ofρ ◦ u. We
denote byδ (u) the multiplicity ofu at the origin.

We now define the D’Angelo type and the regular type of the realhypersurface∂D at the origin.

Definition 2.2.

(1) The D’Angelo type of∂D at the origin is defined by:

∆1 (∂D, 0) := sup

{
δ0 (∂D, u)

δ (u)
, u : ∆ →

(
R

4, J
)

J-holomorphic, u (0) = 0

}
.

The point0 is a point of finite D’Angelo type2m if ∆1 (∂D, 0) = 2m < +∞.
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(2) The regular type of∂D at origin is defined by:

∆1
reg (∂D, 0) := sup{δ0 (∂D, u) , u : ∆ →

(
R

4, J
)

J-holomorphic,

u (0) = 0, d0u 6= 0}.

Since the regular type of∂D at the origin consists in considering only regular discs we have:

(2.1) ∆1
reg (∂D, 0) ≤ ∆1 (∂D, 0) .

The type condition as defined in part 1 of Definition 2.2 was introduced by J.-P.D’Angelo [7], [8] who
proved that this coincides with the regular type in complex manifolds of dimension two. After Proposition
2.3, we will also prove that the D’Angelo type and the regulartype coincide in four dimensional almost
complex manifolds (see Proposition 2.4).

We suppose that the origin is a point of finite regular type. Then letu : ∆ → R
4 be a regularJ-

holomorphic disc of maximal contact order2m. We choose coordinates such thatu is given byu (ζ) =
(ζ, 0), J (z1, 0) = Jst and such that the complex tangent spaceT0∂D ∩ J(0)T0∂D is equal to{z2 = 0}.
Then by considering the family of vectors(1, 0) at base points(0, t) for t 6= 0 small enough, we obtain a
family of J holomorphic discsut such thatut (0) = (0, t) andd0ut (∂/∂x) = (0, 1). Due to the parameters
dependance of the solution to theJ-holomorphy equation (1.1), we straighten these discs intothe complex
lines{z2 = t}. We then consider a transversal foliation byJ-holomorphic discs and straighten these lines
into {z1 = c}. In these new coordinates still denoted byz, the matricial representation ofJ is diagonal:

(2.2) J =




a1 b1 0 0
c1 −a1 0 0
0 0 a2 b2

0 0 c2 −a2


 .

SinceJ (z1, 0) = Jst we have

(2.3) J = Jst + O (|z2|) .

In the next fundamental proposition we describe precisely the local expression of the defining functionρ.

Proposition 2.3. TheJ-plurisubharmonic defining function for the domainD has the following local ex-
pression:

ρ = ℜez2 + H2m (z1, z1) + H̃(z1, z2) + O
(
|z1|

2m+1 + |z2||z1|
m + |z2|

2
)

whereH2m is a homogeneous polynomial of degree2m, subharmonic which is not harmonic and

H̃(z1, z2) = ℜe
m−1∑

k=1

ρkz
k
1z2.

Proof. SinceT0∂D ∩ J(0)T0∂D = {z2 = 0}, we have

ρ = ℜez2 + O(‖z‖2).

Moreover the discζ 7→ (ζ, 0) being a regularJ-holomorphic disc of maximal contact order2m, the defining
functionρ has the following local expression:

ρ = ℜez2 + H2m (z1, z1) + O
(
|z1|

2m+1 + |z2|‖z‖
)
,

whereH2m is a homogeneous polynomial of degree2m.
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We prove that the polynomialH2m is subharmonic using a standard dilation argument. Consider the
non-isotropic dilation ofC2

Λδ (z1, z2) :=
(
δ−

1

2m z1, δ
−1z2

)
.

Due to Proposition 1.2, the domain

Λδ (D) = {δ−1
(
ρ ◦ Λ−1

δ (z1, z2)
)

< 0}

is (Λδ)∗ (J)-pseudoconvex. MoreoverΛδ (D) converges in the sense of local Hausdorff set convergence to

D̃ := {Re (z2) + H2m (z1, z1) < 0},

asδ tends to zero and the sequence of structures(Λδ)∗ J converges to the standard structureJst. It follows
that the limit domainD̃ is Jst-pseudoconvex implying thatH2m is subharmonic.

Now we proveH2m that contains a nonharmonic part. By contradiction, we assume thatH2m is harmonic.
ThenH2m can be writtenℜez2m

1 . According to Proposition 1.1 of [17], and since the structure J is smooth
there exists, for a sufficiently smallλ > 0, a pseudoholomorphic discu : ∆ → (R4, J) such that:





u (0) = 0

∂u

∂x
(0) =

(
λ

1

2m , 0, 0, 0
)

∂ku

∂xk
(0) = (0, 0, 0, 0) , for 1 < k < 2m

∂2mu

∂x2m
(0) = (0, 0,−λ (2m)!, 0) .

We prove that the contact order of such a regular discu is greater than2m which contradicts the fact thatD
is of regular type2m. We denote by[ρ ◦ u]2m the homogeneous part of degree2m in the Taylor expansion
of ρ ◦ u at the origin:

[ρ ◦ u]2m (x, y) =
2m∑

k=0

akx
ky2m−k.

Let us prove thatak =
∂k

∂xk

∂2m−k

∂y2m−k
ρ ◦ u (0) is equal to zero for each0 ≤ k ≤ 2m.

Fora2m, we have:

∂2m

∂x2m
ρ ◦ u (0) = ℜe

∂2m

∂x2m
u2 (0) + ℜe

∂2m

∂x2m
u2m

1 (0)

= −λ (2m)! + ℜe
∂2m

∂x2m
u2m

1 (0) .

Sinceu1 (0) = 0, it follows that the only non vanishing term inℜe
∂2m

∂x2m
u2m

1 (0) is

(2m)!ℜe

(
∂u1

∂x
(0)

)2m

= λ (2m)!.

This proves thata2m = 0.
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Then let0 ≤ k < 2m:

∂k

∂xk

∂2m−k

∂y2m−k
ρ ◦ u (0) = ℜe

∂k

∂xk

∂2m−k

∂y2m−k
u2 (0) + ℜe

∂k

∂xk

∂2m−k

∂y2m−k
u2m

1 (0) .

For the same reason as previously, the only term to consider in ℜe
∂k

∂xk

∂2m−k

∂y2m−k
u2m

1 (0) is

(2m)!ℜe

(
∂

∂x
u1 (0)

)k ( ∂

∂y
u1 (0)

)2m−k

= λ
k

2m (2m)!ℜe

(
∂u1

∂y
(0)

)2m−k

.

Then, sinceu is J-holomorphic, it satisfies the diagonalJ-holomorphy equation:

∂ul

∂y
= Jl (u)

∂ul

∂x
,

for l = 1, 2, where

Jl =

(
al bl

cl −al

)
(see (2.2) for notations).

It follows that

λ
k

2m (2m)!ℜe

(
∂u1

∂y
(0)

)2m−k

= λ
k

2m (2m)!ℜe

(
J1 (u (0))

∂u1

∂x
(0)

)2m−k

= λ (2m)!ℜe (i)2m−k .

Moreover due to the condition
∂ku2

∂xk
(0) = (0, 0), for 1 ≤ k < 2m, it follows that the only part we need

to consider in
∂2m−k

∂y2m−k
u2 (0) is J2 (u)

∂

∂x

∂2m−k−1

∂y2m−k−1
u2 (0) and by induction(J2 (u))2m−k ∂2m−k

∂x2m−k
u2 (0).

Finally

ℜe
∂k

∂xk

∂2m−k

∂y2m−k
u2 (0) = ℜe (J2 (u (0)))2m−k ∂2mu2

∂x2m
(0)

= −λ (2m)!ℜe
(
J2 (u (0))2m−k (1, 0)

)

= −λ (2m)!ℜe (i)2m−k .

This proves that the homogeneous part[ρ ◦ u]2m is equal to zero.

For smaller order terms it is a direct consequence ofu (0) = 0 and
∂ku

∂xk
(0) = (0, 0, 0, 0) , for 1 < k <

2m.

It remains to prove there are no termℜeρkz
k
1z2 with k < m in the defining functionρ. This is done by

contradiction and by computing the Levi form ofρ at a pointz0 = (z1, 0) and at a vectorv = (X1, 0,X2, 0).
Assume that

ρ = ℜez2 + H2m (z1, z1) + H̃(z1, z2) + ℜeρkz
k
1z2 + O

(
|z1|

2m+1 + |z2||z1|
k+1 + |z2|

2
)

,

with k < m. Replacingz1 by (ρk)
1

k z1 if necessary, we supposeρk = 1.
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The Levi form ofℜez2 at a pointz0 = (z1, 0) and at a vectorv = (X1, 0,X2, 0) is equal to

LJℜez2 (z0, v) =

[
(a1 − a2) (z0)

∂a2

∂x1
(z0) + c1(z0)

∂a2

∂y1
(z0) − c2(z0)

∂b2

∂x1
(z0)

]
X1X2 +

c2(z0)

[
∂a2

∂y2
(z0) −

∂b2

∂x2
(z0)

]
X2

2 .

Due to (2.3) we have 



a1 (z0) = a2 (z0) = 0,

c2 (z0) = 1,

∂a2

∂y1
(z0) =

∂b2

∂x1
(z0) = 0.

So the Levi form ofℜez2 atz0 = (x1, 0, 0, 0) and at a vectorv = (X1, 0,X2, 0) is

LJℜez2 (z0, v) =

[
∂a2

∂y2
(z0) −

∂b2

∂x2
(z0)

]
X2

2 .

According to Lemma 1.5, the Levi form ofH2m + O(|z1|
2m+1) atz0 andv1 = (X1, 0,X2, 0) is equal to

LJ(H2m + O(|z1|
2m+1)) (z0, v) = ∆

(
H2m + O(|z1|

2m+1)
)
X2

1 + O(|z1|
2m−1)X1X2.

According to the fact that the Levi form for the standard structure ofH̃(z1, z2) is identically equal to
zero, and due to (1.3) and to (2.3), it follows that the Levi form of H̃(z1, z2) atz0 is equal to

LJH̃ (z0, v) = O(|z1|)X
2
2 .

Now the Levi form ofO(|z2|
2) is equal to

LJO(|z2|
2) (z0, v) = O(1)X2

2 .

And the Levi form ofℜezk
1z2 is equal

LJℜezk
1z2 (z0, v) = (kℜezk−1

1 )X1X2 + O(|z1|
k)X2

2 .

Finally the Levi form of the defining functionρ at a pointz0 = (z1, 0) and at a vectorv = (X1, 0,X2, 0)
is equal to:

LJρ (z0, v) = O
(
|z1|

2m−2
)
X2

1 +
[
4kℜezk−1

1 + O(|z1|
2m−1)

]
X1X2

+

[
∂a2

∂y2
(z0) −

∂b2

∂x2
(0) + O(1) + O (|z1|)

]
X2

2 .

It follows that sincek < m there arez1, X1 andX2 such thatLJρ (z0, v) is negative, providing a contra-
diction.

�

Now we prove that the D’Angelo type coincides with the regular type in the non integrable case.

Proposition 2.4. We have
∆1

reg (∂D, 0) = ∆1 (∂D, 0) .
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Proof. We suppose that the origin is a point of finite D’Angelo type. According to (2.1) we may write:

∆1
reg (∂D, 0) = 2m < +∞.

So we may assume thatu (ζ) = (ζ, 0) is a regularJ-holomorphic disc of maximal contact order2m, and that
the structureJ satisfies (2.2) and (2.3). Moreover the defining functionρ has the following local expression:

ρ = ℜez2 + H2m (z1, z1) + O
(
|z1|

2m+1 + |z2|‖z‖
)
.

Now consider aJ-holomorphic discv = (f1, g1, f2, g2) : (∆, 0) →
(
R

4, 0, J
)

of finite contact order
satisfyingv (0) = 0 and such thatδ (v) ≥ 2 (see definition 2.1 for notations).

We setv1 := f1 + ig1 andv2 := f2 + ig2. TheJ-holomorphy equation for the discv is given by:




ak (v)
∂fk

∂x
+ bk (v)

∂gk

∂x
=

∂fk

∂y
,

ck (v)
∂fk

∂x
− ak (v)

∂gk

∂x
=

∂gk

∂y
,

for k = 1, 2. SinceJ (v) = Jst + O (|v2|) andδ (v) ≥ 2, it follows that:

(2.4)





δ (v1) = δ (f1) = δ (g1) ,

δ (v2) = δ (f2) = δ (g2) .

Then consider

(2.5) ρ ◦ v (ζ) = f2 (ζ) + H2m

(
v1 (ζ) , v1 (ζ)

)
+ O

(
|v1 (ζ) |2m+1 + |v2(ζ)|‖v (ζ) ‖

)
.

Equation (2.4) implies that the termO (|v2|‖v‖) in (2.5) vanishes to order larger thanf2.

Case 1:δ(f2) > δ (H2m (v1, v1)). In that case

δ0 (∂D, u) = δ (H2m (v1, v1)) = 2mδ (v1) .

Thus we get:
δ0 (∂D, v)

δ (v)
=

2mδ (v1)

δ (v1)
= 2m.

Case 2:δ(f2) ≤ δ (H2m (v1, v1)). We have two subcases.

Subcase 2.1:f2 + H2m (v1, v1) 6≡ 0. Thus

δ0 (∂D, u) = δ (ℜev2) = δ (v2) ,

and so
δ0 (∂D, v)

δ (v)
=

δ (v2)

δ (v)
≤

δ (H2m (v1, v1))

δ (v)
=

2mδ (v1)

δ (v)
.

This means that:
δ0 (∂D, v)

δ (v)
= 1 if δ (v) = δ (v2)

or
δ0 (∂D, v)

δ (v)
≤ 2m if δ (v) = δ (v1) .



PSEUDOCONVEX REGIONS OF FINITE D’ANGELO TYPE 11

Subcase 2.2:f2 + H2m (v1, v1) ≡ 0. Let w : ∆ →
(
R

4, Jst

)
be a standard holomorphic disc satisfying

w (0) = 0 and:
∂kw

∂xk
(0) =

∂kv

∂xk
(0) ,

for k = 1, · · · , 2mδ (v). Sinceδ (v2) = 2mδ (v1) = 2mδ (v) < +∞ and sinceJ (v) = Jst + O(|v2|),
any differentiation ofJ (v), of order smaller than2mδ (v), is equal to zero. Combining this with theJ-
holomorphy equation (1.1) ofv we obtain:

∂k+lw

∂xk∂yl
(0) =

∂k+lv

∂xk∂yl
(0) ,

for k + l = 1, · · · , 2mδ (v). Sinceρ ◦ v vanishes to an order greater than2mδ (v) at 0 and since it involves
only the2mδ (v)-jet of v, it follows thatρ ◦ w vanishes to an order greater than2mδ (v) at 0. Finally we
have constructed a standard holomorphic discw such that





δ (w) = δ (v) ,

δ0 (∂D,w) > 2mδ (w) ,

which is not possible since, according Proposition 2.3, thetype for the standard structure of∂D at the origin
is equal to2m. �

2.2. Construction of a local peak plurisubharmonic function. We first give the definition of a local peak
J-plurisubharmonic function for a domainD.

Definition 2.5. Let D be a domain in an almost complex manifold(M,J). A function ϕ is called a local
peakJ-plurisubharmonic function at a boundary pointp ∈ ∂D if there exists a neighborhoodU of p such
thatϕ is continuous up toD ∩ U and satisfies:

(1) ϕ is J-plurisubharmonic onD ∩ U ,
(2) ϕ (p) = 0,
(3) ϕ < 0 onD ∩ U\{p}.

The existence of local peakJst-plurisubharmonic functions was first proved by
E.Fornaess and N.Sibony in [11]. For almost complex manifolds the existence was proved by S.Ivashkovich
and J.-P.Rosay in [17] whenever the domain is strictlyJ-pseudoconvex. In the next Proposition we state the
existence forJ-pseudoconvex regions of finite D’Angelo type. As mentionned earlier our the considerations
are purely local. In particular, the assumptions ofJ-plurisubharmonicity and of finite D’Angelo type may
be restricted to a neighborhood of a boundary point. For convenience of writing, we state them globally.

Theorem 2.6. LetD = {ρ < 0} be a domain of finite D’Angelo type in a four dimensional almost complex
manifold(M,J). We suppose thatρ is aC2 defining function ofD, J-plurisubharmonic on a neighborhood
of D. Letp ∈ ∂D be a boundary point. Then there exists a local peakJ-plurisubharmonic function atp.

Proof. Since the existence of a local peak function near a boundary point of type2 was proved in [17], we
assume thatp is a boundary point of D’Angelo type2m > 2. The problem being purely local we assume
thatD ⊂ C2 and thatp = 0. According to Proposition 2.3 the defining functionρ has the following local
expression on a neighborhoodU of the origin:

ρ = ℜez2 + H2m (z1, z1) + H̃(z1, z2) + O
(
|z1|

2m+1 + |z2||z1|
m + |z2|

2
)

whereH2m is a subharmonic polynomial containing a nonharmonic part,denoted byH∗
2m, and

H̃(z1, z2) = ℜe
m−1∑

k=1

ρkz
k
1z2.
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According to [11] (see Lemma 2.4), the polynomialH2m satisfies the following Lemma:

Lemma 2.7. There exist a positiveδ > 0 and a smooth functiong : R → R with period2π with the
following properties:

(1) −2 < g (θ) < −1,
(2) ‖g‖ < 1/δ,
(3) max

(
∆H2m,∆

(
‖H∗

2m‖g (θ) |z1|
2m
))

> δ‖H∗
2m‖|z1|

2(m−1), for z1 = |z1|e
iθ 6= 0 and,

(4) ∆
(
H2m + δ‖H∗

2m‖g (θ) |z1|
2m
)

> δ2‖H∗
2m‖|z1|

2(m−1).

We denote byP the function defined by

P (z1, z1) := H2m (z1, z1) + δ‖H∗
2m‖g (θ) |z1|

2m.

Theorem 2.6 will be proved by establishing the following claim.

Claim. There are positive constantsL andC such that the function

ϕ := ℜez2 + 2L (ℜez2)
2 − L (ℑmz2)

2 + P (z1, z1) + H̃(z1, z2) + C|z1|
2|z2|

2

is a local peakJ-plurisubharmonic function at the origin.

Proof of the claim.We first prove that the functionϕ is J-plurisubharmonic. We set:

ddc
Jϕ = α1dx1 ∧ dy1 + α2dx2 ∧ dy2 + α3dx1 ∧ dx2 + α4dx1 ∧ dy2 + α5dy1 ∧ dx2 + α6dy1 ∧ dy2,

whereαk, for k = 1, · · · , 6, are real valued function. According to the matricial representation ofJ (see
(2.2)), the Levi form ofϕ at a pointz ∈ D ∩U and at a vectorv = (X1, Y1,X2, Y2) ∈ TzR

4 can be written

LJϕ (z, v) = c1α1X
2
1 − 2a1α1X1Y1 − b1α1Y

2
1 + β3X1X2 + β4X1Y2 +

β5Y1X2 + β6Y1Y2 + c2α2X
2
2 − 2a2α2X2Y2 − b2α2Y

2
2 ,

with 



β3 := α3 (a2 − a1) + α4c2 − α5c1

β4 := −α4 (a1 + a2) + α3b2 − α6c1

β5 := α5 (a1 + a2) − α3b1 + α6c2

β6 := α6 (a1 − a2) − α4b1 + α5b2.

Moreover due to (2.3) we have fork = 1, 2



ak = O (|z2|)

bk = −1 + O (|z2|)

ck = 1 + O (|z2|) .

This implies that fork = 1, 2:

ckαkX
2
k − 2akαkXkYk − bkαkY

2
k ≥

αk

2

(
X2

k + Y 2
k

)
.
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Thus we obtain

LJϕ (z, v) ≥
α1

4
X2

1 + β3X1X2 +
α2

4
X2

2 +
α1

4
Y 2

1 + β5Y1X2 +
α2

4
X2

2 +

α1

4
X2

1 + β4X1Y2 +
α2

4
Y 2

2 +
α1

4
Y 2

1 + β6Y1Y2 +
α2

4
Y 2

2 .

In order to prove thatϕ is J-plurisubharmonic, we need to see that:

(1) αk ≥ 0, for k = 1, 2,

(2) 4β2
j ≤ α1α2, for j = 3, · · · , 6.

The coefficientα2 is obtained by the differentiation ofℜez2, 2L (ℜez2)
2 − L (ℑmz2)

2, H̃(z1, z2) and
C|z1|

2|z2|
2. Hence we have forz sufficiently close to the origin

α2 ≥ L > 0.

The coefficientα1 is obtained by differentiatingP , H̃(z1, z2) andC|z1|
2|z2|

2. This is equal to

α1 = ∆P + O(|z1|
2m−2|z2|) + O(|z2|

2) + C|z2|
2 + O(|z2|

3)

≥
δ2‖H∗

2m‖

2
|z1|

2m−2 +
C

2
|z2|

2,

for z sufficiently small andC > 0 large enough. Henceα1 is nonnegative.
Finally it sufficient to prove that

4β2
j ≤ L

(
δ2‖H∗

2m‖

2
|z1|

2m−2 +
C

2
|z2|

2

)
,

to insure theJ-plurisubharmonicity ofϕ. The coefficient|βj | is equal to

|βj | = O(|z2|) + LO(|z2|
2) + O(|z1|

2m−1) + CO(|z1||z2|)

≤ C ′(|z2| + |z1|
2m−1),

for a positive constantC ′ (not depending onL andC). It follows thatϕ is J-plurisubharmonic on a neigh-
borhood of the origin.

We prove now thatϕ is local peak at the origin, that is there existsr > 0 such thatD∩{0 < ‖z‖ ≤ r} ⊂
{ϕ < 0}. Assuming thatz ∈ {ρ = 0} ∩ {0 < ‖z‖ ≤ r} we have:

ϕ (z) = δ‖H∗
2m‖g(θ)|z1|

2m + 2L (ℜez2)
2 − L (ℑmz2)

2 + C|z1|
2|z2|

2 +

O
(
|z1|

2m+1
)

+ O (|z2||z1|
m) + O

(
|z2|

2
)
.

Sinceg < −1 and increasingL if necessary we have

O (|ℑmz2||z1|
m) ≤ −

1

2
δ‖H∗

2m‖g (θ) |z1|
2m +

1

2
L (ℑmz2)

2 ,
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wheneverz is sufficiently close to the origin. Thus

ϕ (z) ≤ −
1

2
δ‖H∗

2m‖|z1|
2m + (2L + C|z1|

2) (ℜez2)
2 −

1

2
L (ℑmz2)

2 + C|z1|
2(ℑmz2)

2 +

O
(
|z1|

2m+1
)

+ O (|ℜez2||z1|
m) + O

(
|z2|

2
)

≤ −
1

4
δ‖H∗

2m‖|z1|
2m + (2L + C|z1|

2) (ℜez2)
2 −

1

4
L (ℑmz2)

2 + O (|ℜez2||z1|
m) +

O
(
|z2|

2
)
.

There is a positive constantC ′′ such that

O
(
|z2|

2
)
≤ C ′′|ℜez2|

2 + C ′′|ℑmz2|
2.

Thus increasingL if necessary:

ϕ (z) ≤ −
1

4
δ‖H∗

2m‖|z1|
2m + (2L + C|z1|

2) (ℜez2)
2 + O(|ℜez2|

2)

−

(
1

4
L − C ′′

)
(ℑmz2)

2 + O (|ℜez2||z1|
m) + O(|ℑmz2|

2‖z‖).

≤ −
1

4
δ‖H∗

2m‖|z1|
2m + (2L + C|z1|

2) (ℜez2)
2 + O(|ℜez2|

2) + O (|ℜez2||z1|
m)

−
1

2

(
1

4
L − C ′′

)
(ℑmz2)

2 .

Since

−ℜez2(1 + O(|z|)) = H2m (z1, z1) + O
(
|z1|

2m+1 + |ℑmz2||z1| + |ℑmz2|
2
)
,

we have

(ℜez2)
2(1 + O(|z|)) = O

(
|z1|

4m + |ℑmz2||z1|
2m+1 + |ℑmz2|

2‖z‖
)
.

We finally obtain forz small enough

ϕ (z) ≤ −
1

8
δ‖H∗

2m‖|z1|
2m −

1

4

(
1

4
L − C ′′

)
(ℑmz2)

2 .

Thusϕ is negative forz ∈ {ρ = 0} ∩ {0 < ‖z‖ ≤ r}, with r small enough. It follows that, reducingr if
necessary,

D ∩ {0 < ‖z‖ ≤ r} ⊂ {ϕ < 0},

which achieves the proof of the claim and of Theorem 2.6. �

We notice that in caseLJℜez2 ≡ 0, we may give a simpler expression for a local peakJ-
plurisubharmonic function.

Proposition 2.8. If LJℜez2 ≡ 0, then there exists a real positive numberL such that the function

ϕ := ℜez2 + 2L (ℜez2)
2 − L (z2)

2 + P (z1, z1)

is local peakJ-plurisubharmonic at the origin.
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3. ESTIMATES OF THEKOBAYASHI PSEUDOMETRIC

In this section we prove standard estimates of the Kobayashipseudometric onJ-pseudoconvex regions
of finite D’Angelo type in an almost complex manifold.

3.1. The Kobayashi pseudometric.The existence of local pseudoholomorphic discs proved in [21] allows
to define theKobayashi pseudometricK(M,J) for p ∈ M andv ∈ TpM :

K(M,J) (p, v) := inf

{
1

r
> 0, u : ∆ → (M,J) J-holomorphic, u (0) = p, d0u (∂/∂x) = rv

}
.

Since the composition of pseudoholomorphic maps is still pseudoholomorphic, the Kobayashi (infinites-
imal) pseudometric satisfies the following decreasing property :

Proposition 3.1. Let f : (M ′, J ′) → (M,J) be a(J ′, J)-holomorphic map. Then for anyp ∈ M ′ and
v ∈ TpM

′ we have
K(M ′,J ′) (p, v) ≥ K(M,J) (f (p) , dpf (v)) .

Let d(M,J) be the integrated pseudodistance ofK(M,J) :

d(M,J) (p, q) := inf

{∫ 1

0
K(M,J) (γ (t) , γ̇ (t)) dt, γ : [0, 1] → M, γ (0) = p, γ (1) = q

}
.

Similarly to the standard integrable case, B.Kruglikov (see [19]) proved that the integrated pseudodis-
tance of the Kobayashi pseudometric coincides with the Kobayashi pseudodistance defined by chains of
pseudholomorphic discs. Then we define :

Definition 3.2. (1) The manifold(M,J) is Kobayashi hyperbolic if the integrated pseudodistance
d(M,J) is a distance.

(2) The manifold(M,J) is local Kobayashi hyperbolic atp ∈ M if there exist a neighborhoodU of p
and a positive constantC such that

K(M,J) (q, v) ≥ C‖v‖

for everyq ∈ U and everyv ∈ TqM .
(3) A Kobayashi hyperbolic manifold(M,J) is complete hyperbolic if it is complete for the distance

d(M,J).

3.2. Hyperbolicity of pseudoconvex regions of finite D’Angelo type. In order to localize pseudoholo-
morphic discs, we need the following technical Lemma (see [12] for a proof).

Lemma 3.3. Let 0 < r < 1 and letθr be a smooth nondecreasing function onR
+ such thatθr (s) = s

for s ≤ r/3 and θr (s) = 1 for s ≥ 2r/3. Let (M,J) be an almost complex manifold, and letp be a
point ofM . Then there exist a neighborhoodU of p, positive constantsA = A (r) ≥ 1, B = B (r), and a
diffeomorphismz : U → B such thatz (p) = 0, z∗J (p) = Jst and the functionlog

(
θr

(
|z|2
))

+θr (A|z|)+

B|z|2 is J-plurisubharmonic onU .

In the next Proposition we give a priori estimates and a localization principle of the Kobayashi pseudo-
metric. This proves the local Kobayashi hyperbolicity ofJ-pseudoconvexC2 regions of finite D’Angelo
type. If (M,J) admits a globalJ-plurisubharmonic function, then K.Diederich and A.Sukhov proved in [9]
the (global) Kobayashi hyperbolicity of a relatively compact J-pseudoconvex domains (withC3 boundary)
by constructing a bounded strictlyJ-plurisubharmonic exhaustion function. We notice that, inour case,
if the manifold (M,J) admits a globalJ-plurisubharmonic function thenJ-pseudoconvexC2 relatively
compact regions of finite D’Angelo type are also (globally) Kobayashi hyperbolic.
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Proposition 3.4. Let D = {ρ < 0} be a domain of finite D’Angelo type in an almost complex manifold
(M,J), whereρ is a C2 defining function ofD, J-plurisubharmonic in a neighborhood ofD. Let p ∈ D̄
and letU be a neighborhood ofp in M . Then there exist positive constantsC ands, and a neighborhood
V ⊂ U of p in M , such that for eachq ∈ D ∩ V and eachv ∈ TqM :

(3.1) K(D,J) (q, v) ≥ C‖v‖,

(3.2) K(D,J) (q, v) ≥ sK(D∩U,J) (q, v) .

This Proposition is a classical application of Lemma 3.3. This is due to N.Sibony [22] (see also [2] and
[12] for a proof). For convenience we give the proof.

Proof. According to Theorem 2.6, there exists a local peakJ-plurisubharmonic functionϕ at p for D. We
can choose constants0 < α < α′ < β′ < β andN > 0 such thatϕ ≥ −β2/N on {‖z‖ < α} and
ϕ ≤ −2β2/N onD ∩ {α′ ≤ ‖z‖ ≤ β′}.

We defineϕ̃ by:

ϕ̃ :=





max
(
Nϕ + ‖z‖2 − β2,−2β2

)
if z ∈ D ∩ {‖z‖ ≤ β′},

−2β2 onD\{‖z‖ ≤ β′}.

The function‖z‖2 is J-plurisubharmonic on{q ∈ U : |z (q) | < 1} if ‖z∗J−Jst‖C2(B) is sufficiently small.
Then it follows thatϕ̃ is J-plurisubharmonic onD. We may also suppose thatϕ̃ is negative onD. Moreover
the functionϕ̃ − ‖z‖2 is J-plurisubharmonic onD ∩ {q ∈ U : |z (q) | ≤ α}.

Let θα2 be a smooth non decreasing function onR
+ such thatθα2 (s) = s for s ≤ α2/3 andθα2 (s) = 1

for s ≥ 2α2/3. SetV = {q ∈ U : |z (q) | ≤ α2}. According to Lemma 3.3, there are uniform positive
constantsA ≥ 1 andB such that the function

log
(
θα2

(
|z − z (q) |2

))
+ θα2 (A|z − z (q) |) + B‖z‖2

is J-plurisubharmonic onU for everyq ∈ D ∩ V .
We define for eachq ∈ D ∩ V the function:

Ψq :=





θα2

(
|z − z (q) |2

)
exp (θα2 (A|z − z (q) |)) exp (Bϕ̃ (z)) onD ∩ {‖z‖ < α},

exp (1 + Bϕ̃) onD \ {‖z‖ < α}.

The functionlogΨq is J-plurisubharmonic onD ∩ {‖z‖ < α} and, onD \ {‖z‖ < α}, it coincides with
1 + Bϕ̃ which isJ-plurisubharmonic. FinallylogΨq is J-plurisubharmonic on the whole domainD.

Let q ∈ V and letv ∈ TqM and consider aJ-holomorphic discu : ∆ → D such thatu (0) = q and
d0u (∂/∂x) = rv wherer > 0. Forζ sufficiently close to 0 we have

u (ζ) = q + d0u (ζ) + O
(
|ζ|2
)
.

We define the following function

φ (ζ) :=
Ψq (u (ζ))

|ζ|2

which is subharmonic on∆\{0} sincelogφ is subharmonic. Ifζ close to0, then

(3.3) φ (ζ) =
|u (ζ) − q|2

|ζ|2
exp (A|u (ζ) − q|) exp (Bϕ̃ (u (ζ))) .
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Settingζ = ζ1 + iζ2 and using theJ-holomorphy conditiond0u ◦ Jst = J ◦ d0u, we may write :

d0u (ζ) = ζ1d0u (∂/∂x) + ζ2J (d0u (∂/∂x)) .

(3.4) |d0u (ζ) | ≤ |ζ| (‖I + J‖ ‖d0u (∂/∂x) ‖)

According to (3.3) and to (3.4), we obtain thatlim supζ→0 φ (ζ) is finite. Moreover settingζ2 = 0 we have

lim sup
ζ→0

φ (ζ) ≥ ‖d0u (∂/∂x) ‖2 exp (Bϕ̃ (q)) .

Applying the maximum principle to a subharmonic extension of φ on∆ we obtain the inequality

‖d0u (∂/∂x) ‖2 ≤ exp (1 − Bϕ̃ (q)) .

Hence, by definition of the Kobayashi pseudometric, we obtain for everyq ∈ D∩V and everyv ∈ TqM :

K(D,J) (q, v) ≥ (exp (−1 + Bϕ̃ (q)))
1

2 ‖v‖.

This gives estimate (3.1).

Now in order to obtain estimate (3.2), we prove that there is aneighborhoodV ⊂ U and a positive
constants such that for anyJ-holomorphic discu : ∆ → D with u (0) ∈ V thenu (∆s) ⊂ D∩U. Suppose
this is not the case. We obtain a sequenceζν of ∆ and a sequence ofJ-holomorphic discsuν such thatζν

converges to 0,uν (0) converges top and‖uν (ζν) ‖ /∈ D ∩ U for everyν. According to the estimate (3.1),
we obtain for a positive constantc > 0:

c ≤ d(D,J) (uν (0) , uν (ζν)) ≤ d∆ (ζν , 0) .

This contradicts the fact thatζν converges to 0. �

The (global) Kobayahsi hyperbolicity is provided if we suppose that there is a global strictlyJ-
plurisubharmonic function on(M,J).

Corollary 3.5. Let D = {ρ < 0} be a relatively compact domain of finite D’Angelo type in an almost
complex manifold(M,J) of dimension four,ρ being a defining function ofD, J-plurisubharmonic in a
neighborhood ofD. Assume that(M,J) admits a global strictlyJ-plurisubharmonic function. Then(D,J)
is Kobayahsi hyperbolic.

As an application of the a priori estimate (3.1) of Proposition 3.4, we prove the tautness ofD.

Corollary 3.6. Let D = {ρ < 0} be a relatively compact domain of finite D’Angelo type in an almost
complex manifold(M,J) of dimension two. Assume thatρ is J-plurisubharmonic in a neighborhood ofD.
Moreover suppose that(M,J) admits a global strictlyJ-plurisubharmonic function. ThenD is taut.

Proof. Let (uν)ν be a sequence ofJ-holomorphic discs inD. According to Corollary 3.5 the domainD is
hyperbolic. Thus the sequence(uν)ν is equiconituous, and then by Ascoli Theorem, we can extractfrom
this sequence a subsequence still denoted(uν)ν which converges to a mapu : ∆ → D. Passing to the
limit the equation ofJ-holomorphicity of eachuν , it follows thatu is a J-holomorphic disc. Sinceρ is
J-plurisubharmonic defining function forD, we have, by applying the maximun principle toρ ◦ u, the
alternative: eitheru(∆) ⊂ D or u(∆) ⊂ ∂D. �

We point out that the tautness of the domainD was proved, using a diferent method, by K.Diederich-
A.Sukhov in [9].
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3.3. Uniform estimates of the Kobayashi pseudometric.In order to obtain more precise estimates, we
need to uniform estimates (3.1) of the Kobayashi pseudometric for a sequence of domains.

Proposition 3.7. Assume thatD = {ℜez2 + P (z1, z1) < 0} is aJst-pseudoconvex region ofR
4, whereP

is a homogeneous polynomial of degree2k ≤ 2m admitting a nonharmonic part. LetDν be a sequence of
Jν -pseudoconvex region ofR

4 such that0 ∈ ∂Dν is a boundary point of finite D’Angelo type2lν ≤ 2m.
Suppose thatDν converges in the sense of local Hausdorff set convergence toD whenν tends to+∞ and
that Jν converges toJst in theC2 topology whenν tends to+∞. Then there exist a positive constantC
and a neighborhoodV ⊂ U of the origin inR

4, such that for largeν and for everyq ∈ Dν ∩ V and every
v ∈ TqR

4

K(Dν ,J) (q, v) ≥ C‖v‖.

Proof. Under the conditions of Proposition 3.7 we have the following Lemma:

Lemma 3.8. For every largeν, there exists a diffeomorphismΦν : R
4 → R

4 with the following property:

(1) The mapζ 7→ (ζ, 0) is a (Φν)∗ Jν -holomorphic disc of maximal contact order2lν .
(2) The almost complex structure(Φν)∗ Jν satisfies conditions (2.2) and (2.3).
(3) Φν (Dν) = {ρν < 0} with

ρν = ℜez2 +
2m∑

j=2lν

Pj,ν (z1, z1) + O
(
|z1|

2m+1 + |z2|‖z‖
)

< 0,

wherePj,ν are homogeneous polynomials of degreej andP2lν ,ν contains a nonharmonic part de-
noted byP ∗

2lν ,ν 6= 0.
(4) we haveinfν{‖P2lν ,ν‖} > 0.

Moreover the sequence of diffeomorphismsΦν converges to the identity on any compact subsets ofR
4 in the

C2 topology.

The crucial fact used to prove Proposition 3.7 is the point(4), which is a direct consequence of the
convergence ofΦν (Dν) to D. Hence the proof of Proposition 3.7 is similar to Theorem 2.6and Theorem
3.4, where all the constants are uniform.

�

3.4. Hölder extension of diffeomorphisms.This subsection is devoted to the boundary continuity of dif-
feomorphisms. This is stated as follows:

Proposition 3.9. Let D = {ρ < 0} and D′ = {ρ′ < 0} be two relatively compact domains of finite
D’Angelo type2m in four dimensional almost complex manifolds(M,J) and (M ′, J ′). We suppose that
ρ (resp. ρ′) is a J(respJ ′)-plurisubharmonic defining function on a neighborhood ofD (resp. D′). Let
f : D → D′ be a(J, J ′)-biholomorphism. Thenf extends as a Ḧolder homeomorphism with exponent
1/2m betweenD andD′.

Estimates of the Kobayashi pseudometric obtained by H.Gaussier and A.Sukhov in [12] provide the
Hölder extension with exponent1/2 up to the boundary of a biholomorphism between two strictly pseu-
doconvex domains (see Proposition 3.3 of [6]). Similarly, in order to obtain Proposition 3.9, we begin by
establishing a more precise estimate than (3.1) of Proposition 3.4.

Proposition 3.10. Let D = {ρ < 0} be a domain of finite D’Angelo type in a four dimensional almost
complex manifold(M,J), whereρ is a C2 defining function ofD, J-plurisubharmonic in a neighborhood
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of D. Let p ∈ ∂D and letU be a neighborhood ofp in M . Then there are positive constantC and a
neighborhoodV ⊂ U of p in M , such that for everyq ∈ D ∩ V and everyv ∈ TqM :

(3.5) K(D,J) (q, v) ≥ C
‖v‖

dist (q, ∂D)1/2m
.

Proof of Proposition 3.10.Let p ∈ ∂D. We may suppose thatD ⊂ R
4, p = 0 and thatJ satisfies (2.2)

and (2.3). Letq′ be a boundary point in a neighborhood of the origin and letϕq′ be the local peakJ-
plurisubharmonic function atq′ given by Theorem 2.6. There are positive constantsC1 andC2 such that

(3.6) −C1‖z − q′‖ ≤ ϕq′ (z) ≤ −C2Ψq′ (z) ,

where
Ψq′ (z) := |z1 − q′1|

2m + |z2 − q′2|
2 + |z1 − q′1|

2|z2 − q′2|
2

is aJ-plurisubharmonic function on a neighborhoodU of the origin.
Now consider aJ-holomorphic discu : ∆ → D, such thatu (0) is sufficiently close to the origin and

then, according to Proposition 3.4, we haveu (∆s) ⊂ D ∩U, for some0 < s < 1 depending only onu (0).
We assume thatq′ is such thatdist (u (0) , ∂D) = ‖u (0) − q′‖. According to theJ-plurisubharmonicity of
Ψq′ , we have for|ζ| ≤ s:

Ψq′ (u (ζ)) ≤
C3

2π

∫ 2π

0
Ψq′

(
u
(
reiθ

))
dθ,

for some positive constantC3. Hence using (3.6) and theJ-plurisubharmonicity ofϕq′ we obtain:

Ψq′ (u (ζ)) ≤ −
C3

2πC2

∫ 2π

0
ϕq′

(
u
(
reiθ

))
dθ ≤ −

C3

C2
ϕq′ (u (0)) .

Since there is a positive constantC4 such that

‖u (ζ) − q′‖2m ≤ C4Ψq′ (u (ζ))

and using (3.6), we finally obtain:

‖u (ζ) − q′‖2m ≤
C1C3C4

C2
dist (u (0) , ∂D) .

Hence there exists a positive constantC5 such that:

dist (u (ζ) , ∂D) ≤ C5dist (u (0) , ∂D)1/2m ,

wheneverζ ≤ s.
According to Lemma1.5 of [17] there is a positive constantC6 such that:

‖∇u (0) ‖ ≤ C6 sup
|ζ|<s

‖u (ζ) − u (0) ‖ ≤ C5C6dist (u (0) , ∂D)1/2m ,

wich provides the desired estimate. �

We also need the two next lemmas provided by [6]:

Lemma 3.11. LetD be a domain in an almost complex manifold(M,J). Then there is a positive constant
C such that for anyp ∈ D and anyv ∈ TpM :

(3.7) K(D,J) (p, v) ≤ C
‖v‖

dist (p, ∂D)
.
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Lemma 3.12. (Hopf lemma) LetD be a relatively compact domain with aC2 boundary on an almost
complex manifold(M,J). Then for any negativeJ-plurisubharmonic functionρ onD there exists a constant
C > 0 such that for anyp ∈ D:

|ρ(p)| ≥ Cdist(p, ∂D).

Now we can go on the proof of Proposition 3.9.

Proof of Proposition 3.9.Let f : D → D′ be a(J, J ′)-biholomorphism. According to Proposition 3.10 and
to the decreasing property of the Kobayashi pseudometric there is a positive constantC such that for every
p ∈ D sufficiently close to the boundary and everyv ∈ TpM

C
‖dpf (v) ‖

dist (f (p) , ∂D′)
1

2m

≤ K(D′,J ′) (f (p) , dpf (v)) = K(D,J) (p, v) .

Due to Lemma 3.11 there exists a positive constantC1 such that:

K(D,J) (p, v) ≤ C1
‖v‖

dist (p, ∂D)
.

This leads to:

‖dpf (v) ‖ ≤
C1

C

dist (f (p) , ∂D′)
1

2m

dist (p, ∂D)
‖v‖.

Moreover the Hopf lemma 3.12 for almost complex manifolds applied toρ′ ◦ f andρ ◦ f−1 and the fact that
ρ andρ′ are defining functions, provides the following boundary distance preserving property:

1

C2
dist (p, ∂D) ≤ dist

(
f (p) , ∂D′

)
≤ C2dist (p, ∂D) ,

for some positive constatC2. Finally this implies:

‖dpf (v) ‖ ≤
C1C2

C

‖v‖

dist (p, ∂D)
2m−1

2m

.

This gives the desired statement. �

4. SHARP ESTIMATES OF THEKOBAYASHI PSEUDOMETRIC

In this section we give sharp lower estimates of the Kobayashi pseudometric in a pseudoconvex region
near a boundary point of finite D’Angelo type less than or equal to four. This condition will appear necessary,
in our proof, as explained in the appendix. Moreover in orderto give sharp estimates near a point of arbitrary
finite D’Angelo type, we are also interested in the nontangential behaviour of the Kobayashi pseudometric.

The main result of this section is the following theorem (seealso Theorem B):

Theorem 4.1. LetD = {ρ < 0} be a relatively compact domain of finite D’Angelo type less than or equal
to four in an almost complex manifold(M,J) of dimension four, whereρ is a C2 defining function ofD,
J-plurisubharmonic on a neighborhood ofD. Then there exists a positive constantC with the following
property: for everyp ∈ D and everyv ∈ TpM there is a diffeomophism,Φp∗, in a neighborhoodU of p,
such that:

(4.1) K(D,J) (p, v) ≥ C

(
| (dpΦp∗v)1 |

τ (p∗, |ρ (p) |)
+

| (dpΦp∗v)2 |

|ρ (p) |

)
,

whereτ (p∗, |ρ (p) |) is defined by (4.3).
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As a direct consequence we have:

(4.2) K(D,J) (p, v) ≥ C ′

(
| (dpΦp∗v)1 |

|ρ (p) |
1

4

+
| (dpΦp∗v)2 |

|ρ (p) |

)
,

for a positive constantC ′.

In complex manifolds, D.Catlin [5] first obtained such an estimate, based on lower estimates of the
Carathéodory pseudometric. F.Berteloot [3] gave a different proof based on a Bloch principle. Our proof
wich is inspired by the proof of F.Berteloot is based on some scaling method.

4.1. The scaling method.We consider here a pseudoconvex regionD = {ρ < 0} of finite D’Angelo type
2m in R

4, whereρ has the following expression on a neighborhoodU of the origin:

ρ (z1, z2) = ℜez2 + H2m (z1, z1) + O
(
|z1|

2m+1 + |z2|‖z‖
)
.

whereH2m is a homogeneous subharmonic polynomial of degree2m admitting a nonharmonic part.
Assume thatpν is a sequence of points inD ∩ U converging to the origin. For eachpν sufficiently close

to ∂D, there exists a unique pointp∗ν ∈ ∂D ∩ U such that

p∗ν = pν + (0, δν) ,

with δν > 0. Notice that for largeν, the quantityδν is equivalent todist (pν , ∂D ∩ U) and to|ρ (pν) |.

We consider a diffeomorphismΦν : R
4 → R

4 satisfying:

(1) Φν (p∗ν) = 0 andΦν (pν) = (0,−δν).
(2) Φν converges toId : R

4 → R
4 on any compact subset ofR

4 in theC2 sense.
(3) When we denote byDν := Φν (D ∩ U) which admits the defining function isρν := ρ ◦ (Φν)−1

and byJν := (Φν)∗ J , thenρν is given by:

ρν (z1, z2) = ℜez2 +
2m∑

k=2lν

Pk (z1, z1, p
∗
ν) + O

(
|z1|

2m+1 + |z2|‖z‖
)
,

where the polynomialP2lν contains a nonharmonic part. MoreoverJν satisfies (2.2) and (2.3).

This is done by considering first the translationT ν of R
4 given byz 7→ z − p∗ν . According to J.-F.Barraud

and E.Mazzilli [1] that the D’Angelo type is an upper semicontinuous function in a four dimensional almost
complex manifold. Thus the D’Angelo type of points in a smallenough neighborhood can only be smaller
than at the point itself. Then we consider a(T ν)∗ J-holomorphic discu of maximal contact order2lν ,
where2lν ≤ 2m is the D’Angelo type ofp∗ν . We choose coordinates such thatu is given byu (ζ) =
(ζ, 0), and such that(T ν)∗ J (z1, 0) = Jst andT0 (∂T ν(D)) ∩ J(0)T0 (∂T ν(D)) = {z2 = 0}. Then by
considering the family of vectors(1, 0) at base points(0, t) for t 6= 0 small enough, we obtain a family
of pseudoholomorphic discsut such thatut (0) = (0, t) andd0ut (∂/∂x) = (0, 1). Due to the parameters
dependance of the solution to theJν -holomorphy equation, we straighten these discs into the lines{z2 = t}.
Next we consider a transversal foliation by pseudoholomorphic discs passing through(t, 0) and(t,−δν) for
t small enough and we straighten these lines into{z1 = c}. This leads to the desired diffeomorphismΦν of
R

4.

Now, we need to remove harmonic terms from the polynomial
2m−1∑

k=2lν

Pk (z1, z1, p
∗
ν) .
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So we consider a biholomorphism (for the standard structure) of C
2 with the following form:

ϕν (z1, z2) :=


z1, z2 +

2m−1∑

k=2lν

ℜe
(
ck,νz

k
1

)

 ,

whereck,ν are well chosen complex numbers. Then the diffeomorphismΦν := ϕν ◦ Φν satisfies:

(1) Φν (p∗ν) = 0 andΦν (pν) = (0,−δν).
(2) Φν converges toId : R

4 → R
4 on any compact subset ofR

4 in theC2 sense.
(3) If we denote byDν := Φν (D ∩ U) the domain with the defining functionρν := ρ ◦ (Φν)

−1, then
ρν is given by:

ρν (z1, z2) = ℜez2 +

2m−1∑

k=2lν

P ∗
k (z1, z1, p

∗
ν) + P2m (z1, z1, p

∗
ν) + O

(
|z1|

2m+1 + |z2|‖z‖
)
,

where the polynomial
2m−1∑

k=2lν

P ∗
k (z1, z1, p

∗
ν)

does not contain any harmonic terms. Moreover the polynomial P ∗
2lν

is not idencally zero. More-
over, generically,Jν := (Φν)∗ J is no more diagonal.

Since the origin is a boundary point of D’Angelo type2m for D, it follows that, denoting byP ∗
2m the

nonharmonic part ofP2m, we haveP ∗
2m (., 0) = H∗

2m 6= 0, whereH∗
2m is the nonharmonic part ofH2m.

This allows to define for largeν:

(4.3) τ (p∗ν , δν) := min
k=2lν ,··· ,2m

(
δν

‖P ∗
k (., p∗ν) ‖

) 1

k

.

Moreover the following inequalities hold:

(4.4)
1

C
δ

1

2
ν ≤ τ (p∗ν , δν) ≤ Cδ

1

2m
ν ,

whereC is a positive constant. The right inequality comes from the fact that‖P ∗
2m (., p∗ν) ‖ ≥ C1 > 0

for largeν. And the left one comes the fact that there exists a positive constantC2 such that for every
2lν ≤ k ≤ 2m we have‖P ∗

k (., p∗ν) ‖ ≤ C2.

Now we consider the nonisotropic dilationΛν of C
2:

Λν : (z1, z2) 7→
(
τ (p∗ν, δν)−1 z1, δ

−1
ν z2

)
.

We setD̃ν := Λν (Dν) the domain admitting the defining functioñρν := δ−1
ν ρν ◦ Λ−1

ν and J̃ν :=
(Λν)∗ (Jν) the direct image ofJν underΛν .

The next lemma is devoted to describe(D̃ν , J̃ν) when passing at the limit.

Lemma 4.2.
(1) The domainD̃ν converges in the sense of local Hausdorff set convergence toa (standard) pseudo-

convex domaiñD = {ρ̃ < 0}, with

ρ̃ (z) = ℜez2 + P (z1, z1) ,

whereP is a nonzero subharmonic polynomial of degree smaller than or equal to2m which admits
a nonharmonic part.
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(2) In case the origin is of D’Angelo type four for D, the sequence of almost complex structuresJ̃ν

converges on any compact subsets ofC
2 in theC2 sense toJst.

Proof. We first prove part 1. Due to inequalities (4.4), the defining function ofD̃ν satisfies:

ρ̃ν = ℜez2 +
2m∑

k=2lν

δ−1
ν τ (p∗ν , δν)k P ∗

k (z1, z1, p
∗
ν) + δ−1

ν τ (p∗ν , δν)2m P2m (z1, z1, p
∗
ν) + O (τ (δν)) .

Passing to a subsequence, we may assume that the polynomial

2m∑

k=2lν

δ−1
ν τ (p∗ν , δν)k P ∗

k (z1, z1, p
∗
ν) + δ−1

ν τ (p∗ν , δν)2m P2m (z1, z1, p
∗
ν)

converges uniformly on compact subsets ofC
2 to a nonzero polynomialP of degree≤ 2m admitting

a nonharmonic part. Since the pseudoconvexity is invariantunder diffeomorphisms, it follows that the
domainsD̃ν areJ̃ν-pseudoconvex, and then passing to the limit, the domainD̃ is Jst-pseudoconvex. Thus
the polynomialP is subharmonic.

We next prove part 2. The complexification of the almost complex structureJν is given by

(Jν)
C

=
2∑

l=1

(
Al,l (z) dzl ⊗

∂

∂zl
+ Bl,l (z) dzl ⊗

∂

∂zl
+ Bl,l (z) dzl ⊗

∂

∂zl
+

Al,l (z) dzl ⊗
∂

∂zl

)
+ A1,2 (z) dz1 ⊗

∂

∂z2
+ B1,2 (z) dz1 ⊗

∂

∂z2
+

B1,2 (z) dz1 ⊗
∂

∂z2
+ A1,2 (z) dz1 ⊗

∂

∂z2
,

where




Al,l (z) = i + O



∣∣∣∣∣z2 +

3∑

k=2

ck,νz
k
1

∣∣∣∣∣

2

 for l = 1, 2,

Bl,l (z) = O

(∣∣∣∣∣z2 +
3∑

k=2

ck,νz
k
1

∣∣∣∣∣

)
for l = 1, 2,

A1,2 (z) =

3∑

k=2

kck,νz
k−1
1 O



∣∣∣∣∣z2 +

3∑

k=2

ck,νz
k
1

∣∣∣∣∣

2

 ,

B1,2 (z) =
3∑

k=2

k
(
ck,νz

k−1
1 − ck,νz

k−1
1

)
O

(∣∣∣∣∣z2 +
3∑

k=2

ck,νz
k
1

∣∣∣∣∣

)
.
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By a direct computation, the complexification ofJ̃ν is equal to:

(
J̃ν

)
C

=

2∑

l=1

(Al,l(Λ
−1
ν (z))dzl ⊗

∂

∂zl
+ Bl,l(Λ

−1
ν (z))dzl ⊗

∂

∂zl
+

Bl,l(Λ
−1
ν (z))dzl ⊗

∂

∂zl
+ Al,l(Λ

−1
ν (z))dzl ⊗

∂

∂zl
) +

τ(p∗ν , δν)δ−1
ν A1,2(Λ

−1
ν (z))dz1 ⊗

∂

∂z2
+ τ(p∗ν , δν)δ−1

ν B1,2(Λ
−1
ν (z))dz1 ⊗

∂

∂z2
+

τ(p∗ν , δν)δ−1
ν B1,2(Λ

−1
ν (z))dz1 ⊗

∂

∂z2
+ τ(p∗ν , δν)δ−1

ν A1,2(Λ
−1
ν (z))dz1 ⊗

∂

∂z2
.

According to (4.4) and sinceck,ν converges to zero whenν tends to+∞ for k = 2, 3, it follows that J̃ν

converges toJst. This proves part(2). �

4.2. Complete hyperbolicity in D’Angelo type four condition. In this subsection we prove Theorem 4.1.
Keeping notations of the previous subsection; we start by establishing the following lemma which gives a
precise localization of pseudoholomorphic discs in boxes.

Lemma 4.3. Assume the origin∈ ∂D is a point of D’Angelo type four. There are positive constants C0, δ0

andr0 such that for any0 < δ < δ0, for any largeν and for anyJν -holomorphic discgν : ∆ → Dν we
have :

gν (0) = (0,−δν) ⇒ gν (r0∆) ⊂ Q (0, C0δν) ,

whereQ (0, δν) := {z ∈ C
2 : |z1| ≤ τ (p∗ν , δν) , |z2| ≤ δν}.

Proof. Proof of Lemma 4.3. Assume by contradiction that there are a sequence(Cν)ν that tends to+∞
as ζν converges to0 in ∆, andJν -holomorphic discsgν : ∆ → Dν such thatgν (0) = (0,−δν) and
gν (ζν) 6∈ Q (0, Cνδν). We consider the nonisotropic dilations ofC

2:

Λr
ν : (z1, z2) 7→

(
r

1

4 τ (p∗ν , δν)−1 z1, rδ
−1
ν z2

)
,

wherer is a positive constant to be fixed. We sethν := Λr
ν ◦gν , ρ̃r

ν := rδ−1
ν ρν ◦(Λr

ν)
−1 andJ̃r

ν := (Λr
ν)∗ Jν .

It follows from Lemma 4.2 that̃ρr
ν converges to

ρ̃ = Re (z2) + P (z1, z1)

uniformly on any compact subset ofC
2 andJ̃r

ν converges toJst, uniformly on any compact subset ofC
2.

According to the stability of the Kobayashi pseudometric stated in Proposition 3.7, there exist a positive
constantC and a neighborhoodV of the origin inR

4, such that for every largeν, for everyq ∈ D̃ν ∩ V and
everyv ∈ TqR

4:
K(D̃ν ,J̃ν) (q, v) ≥ C‖v‖.

Therefore, there exists a constantC ′ > 0 such that

‖ dhν (ζ) ‖≤ C ′

for anyζ ∈ (1/2) ∆ satisfyinghν (ζ) ∈ D̃ν ∩ V ′, with V ′ ⊂ V . Now we choose the constantr such that
hν (0) = (0,−r) ∈ Int (V ′). On the other hand, the sequence|hν (ζν) | tends to+∞. Denote by[0, ζν ] the
segment (inC) joining the origin andζν and letζ ′ν = rνe

iθν ∈ [0, ζν ] be the point closest to the origin such
thathν ([0, ζ ′ν ]) ⊂ D̃ν ∩ V andhν (ζ ′ν) ∈ ∂V . Sincehν (0) ∈ Int (V ′), we have

‖hν (0) − hν

(
ζ ′ν
)
‖ ≥ C ′′
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for some constantC ′′ > 0. It follows that:

‖hν (0) − hν

(
ζ ′ν
)
‖ ≤

∫ rν

0

∥∥∥dhν

(
teiθν

)∥∥∥ dt ≤ C ′rν −→ 0.

This contradiction proves Lemma 4.3. �

Now we go on the proof of Theorem 4.1.

Proof of Theorem 4.1.Due to the localization of the Kobayashi pseudometric established in Proposition 3.4,
it suffices to prove Theorem 4.1 in a neighborhoodU of q ∈ ∂D. Choosing local coordinatesz : U →
B ⊂ R

4 centered atq, we may assume thatD ∩ U = {ρ < 0} is aJ-pseudonconvex region of(R4, J),
that q = 0 ∈ ∂D and thatJ satisfies (2.2) and (2.3). We also suppose that the complex tangent space
T0∂D ∩ J(0)T0∂D at0 of ∂D is given by{z2 = 0}. Moreover the defining functionρ is expressed by:

ρ (z) = ℜez2 + H2m (z1, z1) + O
(
|z1|

2m+1 + |z2|‖z‖
)

Forp ∈ D ∩ U be sufficiently close to the boundary∂D, there exists a unique pointp∗ ∈ ∂D ∩ U such
that

p∗ = p + (0, δ),

with δ > 0. We define an infinitesimal pseudometricN onD ∩ U ⊆ R
4 by:

(4.5) N (p, v) :=
| (dpΦp∗v)1 |

τ (p∗, |ρ (p) |)
+

| (dpΦp∗v)2 |

|ρ (p) |
,

for everyp ∈ D ∩ U and everyv ∈ TpR
4, whereΦp∗ is defined as diffeomorphismsΦν (of previous

subsection) forp∗ instead ofp∗ν .

To prove estimate (4.1) of Theorem 4.1, it suffices to find a positive constantC such that for anyJ-
holomorphic discu : ∆ → D ∩ U , we have:

(4.6) N (u (0) , d0u (∂/∂x)) ≤ C.

Indeed, for aJ-holomorphic discu such thatu (0) = p andd0u (∂/∂x) = rv, (4.6) leads to

1

r
=

N (p, v)

N (u (0) , d0u (∂/∂x))
≥

N (p, v)

C
.

Suppose by contradiction that (4.6) is not true, that is, there is a sequence ofJ-holomorphic discsuν :
∆ → D∩U such thatN (uν (0) , d0uν (∂/∂x)) ≥ ν2. Then we consider a sequence(yν)ν of points in∆1/2

such that:

(1) |yν | ≤
2ν

N (uν (yν) , dyν uν (∂/∂x))
,

(2) N (uν (yν) , dyν uν (∂/∂x)) ≥ ν2, and

(3) yν + ∆ν/N(uν(yν),dyν uν(∂/∂x)) ⊆ ∆1/2 for sufficiently largeν.

This allows to define a sequence ofJ-holomorphic discsgν : ∆ν → D ∩ U by

gν (ζ) := uν

(
yν +

ζ

2N (uν (yν) , dyν uν (∂/∂x))

)
.
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Consider the sequencegν = uν(yν) in D∩U . Since|yν | ≤ 2/ν and since theC1 norm of anyJ-holomorphic
discuν is uniformally bounded it follows thatgν(0) converges to the origin.

We apply the scaling method to the sequencegν (0). We denote bygν (0)∗ the boundary point given by
gν (0)∗ := gν (0) + (0, δν). We set the scaled disc̃gν := Λν ◦ Φν ◦ gν , where diffeomorphismsΛν and
Φν are define in the subsection about the scaling method. In order to extract fromg̃ν a subsequence which
converges to a Brody curve, we need the following Lemma.

Lemma 4.4. There is a positive constantr0 such that:

(1) There exists a positive constantC1 such that

(4.7) g̃ν (r0∆ν) ⊂ ∆C1
× ∆C1

.

(2) There exists a positive constantC2 such that for every largeν we have :

(4.8) ‖dg̃ν‖C0(r0∆ν) ≤ C2.

Proof. We prove the first part. We define aJν -holomorphic dischν (ζ) := Φν ◦ gν (νζ) from the unit disc
∆ to Dν . According to Lemma 4.3, sincehν (0) = Φν ◦ gν (0) = (0,−δν), we have

hν (r0∆) ⊆ Q (0, C0δν)

for some positive constantsr0 andC0. Hence

Φν ◦ gν (r0∆ν) ⊆ Q (0, C0δν) .

After dilations, this leads to (4.7).

Then we prove the second part. According to Lemma 4.2, the sequence of almost complex structures
J̃ν converges on any compact subsets ofC

2 in theC2 sense toJst. Then for sufficiently largeν, the norm
‖J̃ν −Jst‖C1(∆C1

×∆C1
) is as small as necessary. So for largeν, and due to Proposition2.3.6 of J.-C.Sikorav

in [23] there existsC2 > 0 such that (4.8) holds. �

Hence according to Lemmas 4.2 and 4.4 we may extract fromg̃ν a subsequence, still denoted byg̃ν wich
converges inC1 topology to a standard complex line

g̃ : C → ({Rez2 + P (z1, z1) < 0}, Jst) .

The polynomial P is subharmonic and contains a nonharmonic part; this implies that the domain
({Rez2 + P (z1, z1) < 0}, Jst) is Brody hyperbolic and so the complex linẽg is constant. To obtain a
contradiction, we prove that the derivative ofg̃ at the origin is nonzero:

1

2
= N (gν (0) , d0gν (∂/∂x)) =

| (d0 (Φν ◦ gν) (∂/∂x))1 |

τ (gν (0)∗ , |ρ (gν (0)) |)
+

| (d0 (Φν ◦ gν) (∂/∂x))2 |

|ρ (gν (0)) |
.

Since|ρ (gν (0)) | is equivalent toδν , it follows that for some positive constantC3 and for largeν, we have:

1

2
≤ C3

(
| (d0 (Φν ◦ gν) (∂/∂x))1 |

τ (gν (0)∗ , δν)
+

| (d0 (Φν ◦ gν) (∂/∂x))2 |

δν

)
= C3‖d0g̃ν (∂/∂x) ‖1.

Sinceg̃ν converges tõg in the C1 sense, it follows thatd0g̃ (∂/∂x) 6= 0, providing a contradiction. This
achieves the proof of Theorem 4.1. �

Estimate (4.2) of the Kobayashi pseudometric allows to study the completness of the Kobayashi pseu-
dodistanceD.
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Corollary 4.5. LetD = {ρ < 0} be a relatively compact domain of finite D’Angelo type less than or equal
to four in an almost complex manifold(M,J) of dimension four, whereρ is a defining function ofD, J-
plurisubharmonic in a neighborhood ofD. Assume that(M,J) admits a global strictlyJ-plurisubharmonic
function. Then(D,J) is complete hyperbolic.

Proof. The fact that(M,J) admits a global strictlyJ-plurisubharmonic function and estimate (3.1) of
Proposition 3.4 leads to the Kobayashi hyperbolicity ofD. Then estimate (4.2) of the Kobayashi pseudo-
metric stated in Theorem 4.1 gives the completness of the metric space

(
D, d(D,J)

)
by a classical integration

argument. �

4.3. Regions with noncompact automorphisms group.The next corollary is devoted to regions with
noncompact automorphisms group.

Corollary 4.6. Let D = {ρ < 0} be a relatively compact domain in a four dimensional almost complex
manifold(M,J) of finite D’Angelo type less than or equal to four. Assume thatρ is aC2 defining function of
D, J-plurisubharmonic on a neighborhood ofD. If there is an automorphism ofD with orbit accumulating
at a boundary point then there exists a polynomialP of degree at most four, without harmonic part such that
(D,J) is biholomorphic to({ℜez2 + P (z1, z1) < 0}, Jst).

If the domainD is a relatively compact strictlyJ-pseudoconvex domain with noncompact automorphisms
group then(D,J) is biholomorphic to a model domain. This was proved by H.Gaussier and A.Sukhov in
[12] in dimension four and by K.H.Lee in [20] in arbitrary (even) dimension.

Sketch of the proof.We suppose that for some pointp0 ∈ D, there is a sequencefν of automorphisms of
(D,J) such thatpν := fν (p0) converges to0 ∈ ∂D. We apply the scaling method to the sequencepν . Still
keeping notations of subsection4.1, we set

Fν := Λν ◦ Φν ◦ fν : f−1
ν (D ∩ U) → D̃ν .

This sequence of biholomorphisms is such that :

(1)
(
f−1

ν (D ∩ U)
)
ν

converges toD.

(2) D̃ν converges to a pseudoconvex domainD̃ = {Rez2 +P (z1, z1) < 0}, whereP is a nonzero sub-
harmonic polynomial of degree≤ 4 which contains a nonharmonic part. ChangingD̃ by applying a
standard biholomorphism if necessary, we may suppose thatP (z1, z1) is without harmonic terms.

(3) For any compact subsetK ⊂ D, the sequence
(
‖Fν‖C1(K)

)
ν

is bounded.

Hence, we may extract from(Fν)ν a subsequence converging, on any compact subset ofD in theC∞ sense,

to a(J, Jst)-holomorphic mapF : D −→ ¯̃D. Finally F is a(J, Jst)-biholomorphism fromD to D̃. �

4.4. Nontangential approach in the general setting.In this subsection, refering to I.Graham [14], we
give a sharp estimate of the Kobayashi pseudometric of a pseudoconvex region in a cone with vertex at a
boundary point of arbitrary finite D’Angelo type. We denote by Λ := {−ℜez2 > k‖z‖}, where0 < k < 1,
the cone with vertex at the origin and axis the negative realz2 axis.

Theorem 4.7. LetD = {ρ < 0} be a domain of finite D’Angelo type in
(
R

4, J
)
, where

ρ (z1, z2) = ℜez2 + H2m (z1, z1) + O
(
|z1|

2m+1 + |z2|‖z‖
)
,

is a C2 defining function ofD, J-plurisubharmonic on a neighborhood ofD. We suppose thatH2m is a
homogeneous subharmonic polynomial of degree2m admitting a nonharmonic part. Then there exists a
positive constantC such that for everyp ∈ D ∩ Λ and everyv ∈ TpM :

K(D,J) (p, v) ≥ C

(
|v1|

|ρ (p) |
1

2m

+
|v2|

|ρ (p) |

)
.
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Before proving Theorem 4.7 we need the following crucial lemma.

Lemma 4.8. There exist a neighborhoodU of the origin and a positive constantC such that ifp ∈ D∩U∩Λ
then

p ∈
{

z ∈ C
2 : |z1| < C1dist (p, ∂D)

1

2m , |z2| < C1dist (p, ∂D)
}

.

Proof. According to the fact thatdist (z, ∂D) is equivalent to|ρ (z) | = −ℜez2 + O
(
‖z‖2

)
and to the

definition of the coneΛ, we have:

lim
z→0,z∈D∩Λ

−ℜez2

dist (z, ∂D)
= 1.

This implies the existence of a positive constantC1 such that

‖p‖ < −
1

k
ℜep2 ≤ C1dist (p, ∂D) ,

wheneverp ∈ D ∩ Λ is sufficiently close to the origin. Thus

p ∈
{

z ∈ C
2 : |z1| < C1dist (p, ∂D)

1

2m , |z2| < C1dist (p, ∂D)
}

,

for p ∈ D ∩ Λ sufficiently close to the origin.
�

The proof of Theorem 4.7 is similar and easier than proof of Theorem 4.1. For convenience, we write it.

Proof of Theorem 4.7.Let U be a neighborhood of the origin. We define an infinitesimal pseudometricN
onD ∩ U ⊆ R

4 by:

N (p, v) :=
|v1|

|ρ (p) |
1

2m

+
|v2|

|ρ (p) |
,

for everyp ∈ D ∩ U and everyv ∈ TpC
2.

We have to find a positive constantC such that for everyJ-holomorphic discu : ∆ → D ∩U , such that
if u (0) ∈ Λ then:

N (u (0) , d0u (∂/∂x)) ≤ C.

Suppose by contradiction that this inequality is not true, that is, there exists a sequence ofJ-holomorphic
discsuν : ∆ → D ∩ U such that

uν (0) ∈ Λ and N (uν (0) , d0uν (∂/∂x)) ≥ ν2.

Then consider a sequence(yν)ν of points in∆1/2 such that

(1) |yν | ≤
2ν

N (uν (yν) , dyν uν (∂/∂x))
,

(2) N (uν (yν) , dyν uν (∂/∂x)) ≥ ν2, and

(3) yν + ∆ν/N(uν(yν),dyν uν(∂/∂x)) ⊆ ∆1/2 for sufficiently largeν.

Then we define a sequence ofJ-holomorphic discsgν : ∆ν → D ∩ U by

gν (ζ) := uν

(
yν +

ζ

2N (uν (yν) , dyν uν (∂/∂x))

)
.
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For largeν, we havegν (0) = uν (yν) in D ∩ U ∩ Λ andgν (0) converges to the origin. Set

δν := dist (gν (0) , ∂D) ,

and consider the following dilations ofC
2:

Λν : (z1, z2) 7→

(
δ

−1

2m
ν z1, δ

−1
ν z2

)
.

In order to extract fromΛν ◦ gν a subsequence which converges to a Brody curve, we need the following
Lemma.

Lemma 4.9. There exists a positive constantr0 such that:

(1) there exists a positive constantC1 such that:

(4.9) Λν ◦ gν (r0∆ν) ⊂ ∆C1
× ∆C1

,

(2) there is a positive constantC2 such that for every largeν we have :

(4.10) ‖d (Λν ◦ gν) ‖C0(r0∆ν) ≤ C2.

Proof. We first prove (4.9). We define a newJ-holomorphic dischν (ζ) := gν (νζ) from the unit disc∆ to
Dν . According to Lemma 4.8, we have

hν (0) = gν (0) ∈ {z ∈ C
2 : |z1| ≤ C1δ

1

2m
ν , |z2| ≤ C1δν}.

This implies:

hν (r0∆) ⊆ {z ∈ C
2 : |z1| ≤ C0δ

1

2m
ν , |z2| < C0δν},

for positive constantsr0 andC0, since Lemma 4.3 is true if we replaceτ (p∗ν , δν) by δ
1

2m
ν . Hence

gν (r0∆ν) ⊆ {z ∈ C
2 : |z1| < C0δ

1

2m
ν , |z2| ≤ C0δν}.

After dilations, this leads to (4.9).

The proof of (4.10) is similar to (4.8) of Lemma 4.4, since thesequence of structures(Λν)∗ J converges
on any compact subset ofC

2 in theC1 sense toJst becauseJ is diagonal. �

Hence according to Lemma 4.9 we may extract fromΛν ◦gν a subsequence, still denoted byΛν ◦gν wich
converges in theC1 sense to a standard complex lineg̃ : C → ({Rez2 + H2m (z1, z1) < 0}, Jst), where
the domain({Rez2 + P (z1, z1) < 0}, Jst) is Brody hyperbolic sinceH2m (z1, z1) contains a nonharmonic
part. Then the standard complex lineg̃ is constant. To obtain a contradiction, we prove that the derivative of
g̃ is nonzero:

1

2
= N(gν(0), d0gν(∂/∂x)) =

|(d0gν(∂/∂x))1|

|ρ(gν(0))|
1

2m

+
|(d0gν(∂/∂x))2|

|ρ(gν(0))|
.

Since|ρ (gν (0)) | is equivalent toδν , it follows that for some positive constantC3 we have for largeν:

1

2
≤ C3

(
|(d0(gν)(∂/∂x))1|

δ
1

2m
ν

+
|(d0(gν)(∂/∂x))2|

δν

)
= C3‖d0(Λν ◦ gν)(∂/∂x)‖1.

This provide a contradiction. �
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5. APPENDIX : CONVERGENCE OF THE STRUCTURES INVOLVED BY THE SCALING METHOD.

In this appendix, we prove that, generically, the convergence of the sequence of structures involved by the
scaling method to the standard structureJst occurs only on a neighborhood of boundary points of D’Angelo
type less than or equal to four.

Let D = {ρ < 0} be a pseudoconvex region of finite D’Angelo type2m in R
4, whereρ has the following

expression on a neighborhoodU of the origin:

ρ (z1, z2) = ℜez2 + H2m (z1, z1) + O
(
|z1|

2m+1 + |z2|‖z‖
)
,

whereH2m is a homogeneous subharmonic polynomial of degree2m admitting a nonharmonic part. As-
sume thatpν is a sequence of points inD ∩ U converging to the origin, and, for largeν, consider the
sequence of diffeomorphismsΦν : R

4 → R
4 given in the scaling method. We suppose that the function

ρν = ρ ◦ (Φν)−1 is given by:

ρν (z1, z2) = ℜez2 + ℜe
(
ανz

2
1

)
+ βν|z1|

2 +

2m∑

k=3

Pk (z1, z1, p
∗
ν) + O

(
|z1|

2m+1 + |z2|‖z‖
)
.

Moreover the structureJν := (Φν)∗ J satisfies (2.2) and (2.3). To fix notations, we set:

Jν =




aν
1 bν

1 0 0
cν
1 −aν

1 0 0
0 0 aν

2 bν
2

0 0 cν
2 −aν

2


 .

Now, consider the following diffeomorphism ofR
4 defined by:

(5.1) Ψ−1
ν (x1, y1, x2, y2) = (x1 + R1,ν , y1 + S1,ν , x2 + R2,ν , y2 + S2,ν)

converging to the identity and such thatd0Ψ
−1
ν = Id. We suppose thatRk,ν andSk,ν, for k = 1, 2 are real

functions depending smoothly onx1, y1 andy2 and thatR2,ν andS2,ν are given by:

(5.2)





R2,ν = −ανx
2
1 + ανy

2
1 + O

(
|z1|

3 + y2
2 + |y2|‖z‖

)
,

S2,ν = −2ανx1y1 + O
(
|z1|

3 + y2
2 + |y2|‖z‖

)
.

We write:

(5.3)





R1,ν = r5,νx
2
1 + r6,νx1y1 + r7,νy

2
1 + r1,νx

3
1 + r2,νx

2
1y1 + r3,νx1y

2
1+

r4,νy
3
1 + O

(
|z1|

4 + y2
2 + |y2|‖z‖

)

S1,ν = s5,νx
2
1 + s6,νx1y1 + s7,νy

2
1 + s1,νx

3
1 + s2,νx

2
1y1 + s3,νx1y

2
1+

s4,νy
3
1 + O

(
|z1|

4 + y2
2 + |y2|‖z‖

)
.

It follows that:

ρν ◦ Ψ−1
ν (z1, z2) = ℜez2 + βν |z

2
1 | +

2m∑

k=3

P ′
k (z1, z1, ν) + O

(
|z1|

2m+1 + |z2|‖z‖
)
.
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Then we define

τν := min

((
δν

|βν |

) 1

2

, min
k=3,··· ,2m−1

(
δν

‖P ′
k (., ν) ‖

) 1

k

, δ
1

2m
ν

)
.

And we consider the following anisotropic dilations ofC
2:

Λν (z1, z2) :=
(
τ−1
ν z1, δ

−1
ν z2

)
.

If we write Jν := (Ψν)∗ Jν as:

Jν =

(
J1,ν B1,ν

C1,ν J2,ν

)
with C1,ν :=

(
(Jν)

3
1 (Jν)32

(Jν)
4
1 (Jν)42

)
,

then we have:

(Λν)∗ Jν (z) =

(
J1,ν (τνz1, δνz2) τ−1

ν δνB1,ν (τνz1, δνz2)
τνδ

−1
ν C1,ν (τνz1, δνz2) J2,ν (τνz1, δνz2)

)
.

We have generically the following situation:

Proposition 5.1. The sequence of structures(Λν)∗ Jν converges to the standard structureJst if and only if
the D’Angelo type of the origin is less than or equal to four.

Proof. We notice that(Λν)∗ Jν converges toJst if and only if C1,ν = O
(
|z1|

2m−1
)

+ O (|z2|). Indeed if
C1,ν = O

(
|z1|

2m−1
)

+ O (|z2|) then

τνδ
−1
ν C1,ν (τνz1, δνz2) = τ2m

ν δ−1
ν O|z1|

2m + τ2m
ν O|z1|

2m,

which converges to the zero2 by 2 matrix sinceτν ≤ δ
1

2m
ν and sinceC1,ν tends to the zero2 by 2 matrix.

Conversely ifC1,ν = O
(
|z1|

k
)

+ O (|z2|), with k < 2m − 1, then(Λν)∗ Jν converges to a polynomial
integrable structurẽJ = Jst + O|z1|

2 wich is generically different fromJst.

We have proved in Lemma 4.2 that when the origin is a point of D’Angelo type four, thenC1,ν =
O
(
|z1|

3
)

+ O (|z2|) and so(Λν)∗Jν = (Λν ◦ Ψν)∗ Jν converges toJst whenν tends to+∞, with:




R1,ν = S1,ν = 0,

R2,ν = −ανx
2
1 + ανy

2
1,

S2,ν = −2ανx1y1.

In case the D’Angelo type of the origin is greater than four, we cannot guarantee the convergence of
τνδ

−1
ν Cν

1 (τνz1, δνz2) when we only remove harmonic terms. So we need to find a more general sequence
of diffeomorphismsΨν defined by (5.1), (5.2) and (5.3) and such thatC1,ν = O

(
|z1|

2m−1
)

+ O (|z2|).

Claim. There are no polynomialR1,ν , S1,ν , R2,ν andS2,ν such thatC1,ν does not contain any order three
terms inx1 andy1.
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A direct computation leads to:

α−1
ν (Jν)

3
1 (z) = (aν

2 − aν
1)
(
Ψ−1

ν (z)
)
x1 − (cν

1 + bν
2)
(
Ψ−1

ν (z)
)
y1 − y1

∂R1,ν

∂x1

−x1
∂R1,ν

∂y1
− x1

∂S1,ν

∂x1
+ y1

∂S1,ν

∂y1
+ x1

∂R1,ν

∂x1

∂S1,ν

∂x1
+ y1

∂R1,ν

∂x1

∂S1,ν

∂y1

−y1
∂R1,ν

∂y1

∂S1,ν

∂x1
+ x1

∂R1,ν

∂y1

∂S1,ν

∂y1
− y1

(
∂S1,ν

∂x1

)2

− y1

(
∂S1,ν

∂y1

)2

−x1
∂R1,ν

∂x1

∂R2,ν

∂y2
+ x1

∂S1,ν

∂y1

∂R2,ν

∂y2
+ y1

∂R1,ν

∂y1

∂R2,ν

∂y2
+

y1
∂S1,ν

∂x1

∂R2,ν

∂y2
+ O

(
|z1|

4 + |z2|‖z‖
)

and to

α−1
ν (Jν)32 (z) = (bν

1 − bν
2)
(
Ψ−1

ν (z)
)
x1 + (aν

1 + aν
2)
(
Ψ−1

ν (z)
)
y1 + x1

∂R1,ν

∂x1

−y1
∂R1,ν

∂y1
− y1

∂S1,ν

∂x1
− x1

∂S1,ν

∂y1
− x1

(
∂R1,ν

∂x1

)2

− x1

(
∂R1,ν

∂y1

)2

+

y1
∂R1,ν

∂x1

∂S1,ν

∂x1
+ x1

∂R1,ν

∂x1

∂S1,ν

∂y1
− x1

∂R1,ν

∂y1

∂S1,ν

∂x1
+ y1

∂R1,ν

∂y1

∂S1,ν

∂y1

−x1
∂R1,ν

∂y1

∂R2,ν

∂y2
− x1

∂S1,ν

∂x1

∂R2,ν

∂y2
− y1

∂R1,ν

∂x1

∂R2,ν

∂y2
+ y1

∂S1,ν

∂y1

∂R2,ν

∂y2
+

O
(
|z1|

4 + |z2|‖z‖
)
.

The only order two terms inx1 andy1 of α−1
ν (Jν)31 (z) and ofα−1

ν (Jν)32 (z) are those contained, respec-
tively, in

−y1
∂R1,ν

∂x1
− x1

∂R1,ν

∂y1
− x1

∂S1,ν

∂x1
+ y1

∂S1,ν

∂y1

and

x1
∂R1,ν

∂x1
− y1

∂R1,ν

∂y1
− y1

∂S1,ν

∂x1
− x1

∂S1,ν

∂y1
.

Vanishing these order two terms leads to:




R1,ν = r5,νx
2
1 − 2s5,νx1y1 − r5,νy

2
1 + r1,νx

3
1 + r2,νx2

1y1 + r3,νx1y
2
1 + r4,νy

3
1+

O
(
|z1|

4 + y2
2 + |y2|‖z‖

)

S1,ν = s5,νx
2
1 + 2s5,νx1y1 − s5,νy

2
1 + s1,νx

3
1 + s2,νx

2
1y1 + s3,νx1y

2
1 + s4,νy

3
1+

O
(
|z1|

3 + y2
2 + |y2|‖z‖

)
.
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Then it follows that:

α−1
ν (Jν)

3
1 (z) = (aν

2 − aν
1)
(
Ψ−1

ν (z)
)
x1 − (cν

1 + bν
2)
(
Ψ−1

ν (z)
)
y1 − y1

∂R1,ν

∂x1

−x1
∂R1,ν

∂y1
− x1

∂S1,ν

∂x1
+ y1

∂S1,ν

∂y1
+ O

(
|z1|

4 + |z2|‖z‖
)
,

and that

α−1
ν (Jν)32 (z) = (bν

1 − bν
2)
(
Ψ−1

ν (z)
)
x1 + (aν

1 + aν
2)
(
Ψ−1

ν (z)
)
y1 + x1

∂R1,ν

∂x1

−y1
∂R1,ν

∂y1
− y1

∂S1,ν

∂x1
− x1

∂S1,ν

∂y1
+ O

(
|z1|

4 + |z2|‖z‖
)
.

SinceJν satisfies (2.3), we have:





(aν
2 − aν

1)
(
Ψ−1

ν (z)
)
x1 − (cν

1 + bν
2)
(
Ψ−1

ν (z)
)
y1 = H3,ν (x1, y1)+

O
(
|z1|

4 + |z2|‖z‖
)

(bν
1 − bν

2)
(
Ψ−1

ν (z)
)
x1 + (aν

1 + aν
2)
(
Ψ−1

ν (z)
)
y1 = H ′

3,ν (x1, y1)+

O
(
|z1|

4 + |z2|‖z‖
)
,

whereH3,ν (x1, y1) andH ′
3,ν (x1, y1) are real homogeneous polynomials of degree three inx1 andy1 which

are generically non identically zero. Since we cannot insure the convergence of

αντνδ
−1
ν H3,ν (τνx1, τνy1) = αντ4

ν δ−1
ν H3,ν (x1, y1)

and
αντνδ

−1
ν H ′

3,ν (τνx1, τνy1) = αντ
4
ν δ−1

ν H ′
3,ν (x1, y1) ,

we want to cancel polynomialsH3,ν (x1, y1) andH ′
3,ν (x1, y1) by order three terms inx1 andy1 contained

in

−y1
∂R1,ν

∂x1
− x1

∂R1,ν

∂y1
− x1

∂S1,ν

∂x1
+ y1

∂S1,ν

∂y1

and

x1
∂R1,ν

∂x1
− y1

∂R1,ν

∂y1
− y1

∂S1,ν

∂x1
− x1

∂S1,ν

∂y1
.

Finally, vanishing order three terms inx1 and y1 of α−1
ν (Jν)31 (z) and of α−1

ν (Jν)32 (z) involve the
following system of linear equations:




3 0 2 0 0 1 0 0
3 0 0 0 0 −1 0 0
0 1 0 0 3 0 0 0
0 2 0 3 0 0 −1 0
0 1 0 0 −3 0 −2 0
0 0 1 0 0 0 0 −3
0 0 1 0 0 2 0 3
0 0 0 3 0 0 1 0







r1,ν

r2,ν

r3,ν

r4,ν

s1,ν

s2,ν

s3,ν

s4,ν




= Y
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Since this8 × 8 system of linear equations is not a Cramer system, it followsthat there does not exist,
generically, polynomialsR1,ν andS1,ν such that there are no order three term inx1 andy1 in (Jν)31 (z) and
(Jν)32 (z). �
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