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ABSTRACT. LetD = {ρ < 0} be a smooth relatively compact domain in an almost complex manifold (M,J),
where ρ is a smooth defining function of D, strictly J-plurisubharmonic in a neighborhood of the closure D of
D. We prove that D has a connected boundary and is Gromov hyperbolic.

INTRODUCTION

Complex Finsler geometry is an important branch of differential geometry, generalizing Hermitian geom-
etry and carrying precious information on the geometry of the ambient complex manifold; its development
goes back to the introduction of the Carathéodory pseudometric. The interest in complex Finsler geometry
increased with the works of S.Kobayashi and his characterization of ample vector bundles, see [19]. We
will focus in our paper on the Kobayashi metric, another well-known example of a (not necessarily smooth)
complex Finsler pseudometric. One may refer to [20] for a presentation of complex hyperbolic spaces.
When the integrated pseudodistance associated to that metric is a distance, the corresponding metric space
is called Kobayashi hyperbolic and the complex manifold carrying the distance inherits complex dynamical
properties particularly adapted to study spaces of holomorphic maps. In the case of bounded domains in
Cn, curvature conditions on the boundary furnish information on the global behaviour of geodesics in the
associated metric space, as in the celebrated paper of L.Lempert [22] for smooth strongly convex domains,
or on their local boundary behavior, as in [12, 15, 23] for strongly pseudoconvex domains.

Gromov hyperbolic spaces were introduced by M.Gromov [16] in the eighties as geodesic metric spaces
in which geodesic triangles are thin. See for instance [6, 7, 9, 14] for different extensions of the theory.
Trying to find examples of Gromov hyperbolic metric spaces or to characterize them received much atten-
tion. One could quote for instance the papers by Z.Balogh-S.Buckley [2] in which the authors characterize
Gromov hyperbolic domains in the Euclidean space Rn endowed with their quasi-hyperbolic distance, or by
Y.Benoist in which the author characterizes Gromov hyperbolic convex domains for the Hilbert metric [4].
The Hilbert metric may be defined in the general setting of projective maps in real projective spaces, using
the interval ]−1, 1[ as a gauje. The exact complex analogue provides the Kobayashi distance, where projec-
tive maps are replaced with holomorphic maps, the gauje being the unit disc endowed with the Poincaré met-
ric. That similarity between the Hilbert metric and the Kobayashi metric was first observed by S.Kobayashi
[21]. The question of finding examples of Gromov hyperbolic domains, in Cn, for their Kobayashi distance,
is therfore natural. The Poincaré disc and as a generalization the unit ball in Cn endowed with its Kobayashi
metric are well-known such examples.

The aim of the paper is to prove that every relatively compact, strictly pseudoconvex region in an almost
complex manifold, endowed with the Kobayashi distance, is Gromov hyperbolic. In a first step we prove that
such regions have a connected boundary using the Morse theory (Theorem 1). In a second step we prove the
Gromov hyperbolicity of the region by studying the large scale behaviour of geodesics (Theorem 2). That
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second part is in the vein of the results due to Z.Balogh-M.Bonk [1] and L.Blanc-Centi [5]. For clarity and
for the convenience of the reader we include a detailed proof, with the necessary adaptation in the (almost
complex) manifold setting. We point out that a product of any two Kobayashi hyperbolic manifolds is never
Gromov hyperbolic [1], explaining the strong pseudoconvexity condition on the domain. We also point out
that a relatively compact strongly pseudoconvex domain in an almost complex manifold is not necessarily
Kobayashi hyperbolic. One can prove in fact that a relatively compact strongly pseudoconvex domain in an
almost complex manifold is complete hyperbolic if and only if it does not contain a Brody curve. However it
is easy to see that a relatively compact strongly pseudoconvex region in an almost complex manifolds does
not contain any Brody curve.

The two main results of the paper are the following:

Theorem 1. Let D = {ρ < 0} be a smooth relatively compact domain in an almost complex manifold
(M,J), where ρ is a smooth defining function of D, strictly J-plurisubharmonic in a neighborhood of the
closure D of D. Then the boundary ∂D of D is connected.

Theorem 2. Under the same assumptions as in Theorem 1, the domain D endowed with its Kobayashi
distance d(D,J)) is Gromov hyperbolic.

In Section 1 we present the necessary preliminaries. In Section 2 we prove Theorem 1. Finally in Section
3 we prove Theorem 2.
Acknowledgments. The authors would like to thank G.Della Sala for helpful discussions.

1. PRELIMINARIES

1.1. Almost complex manifolds and pseudoholomorphic discs. An almost complex structure J on a real
smooth manifold M is a (1, 1) tensor field which satisfies J2 = −Id. We suppose that J is smooth. The
pair (M,J) is called an almost complex manifold. We denote by Jst the standard integrable structure on Cn
for every n. A differentiable map f : (M ′, J ′) −→ (M,J) between two almost complex manifolds is said
to be (J ′, J)-holomorphic if J (f (p)) ◦ dpf = dpf ◦ J ′ (p) , for every p ∈M ′. In case M ′ = ∆ is the unit
disc in C, such a map is called a pseudoholomorphic disc.

1.2. Strongly J-pseudoconvex domains. Let ρ be a smooth real valued function on a smooth almost com-
plex manifold (M,J) . We denote by dcJρ the differential form defined by dcJρ (v) := −dρ (Jv) , where
v is a section of TM . The Levi form of ρ at a point p ∈ M and a vector v ∈ TpM is defined by
LJρ (p, v) := ddcJρ(p) (v, J(p)v) . We say that ρ is strictly J-plurisubharmonic if LJρ (p, v) > 0 for any
p ∈M and v 6= 0 ∈ TpM . The boundary of a domain D is strongly J-pseudoconvex if at any point p ∈ ∂D
there exists a smooth strictly J-plurisubharmonic function ρ defined in a neighborhood U of p in M satisfy-
ing ∇ρ 6= 0 on ∂D ∩ U and such that D ∩ U = {ρ < 0}. We say that a domain D = {ρ < 0} is a strongly
J-pseudoconvex region in (M,J) if ρ is a smooth defining function of D, strictly J-plurisubharmonic in a
neighborhood of D.

1.3. Hypersurfaces of contact type. Let (V, ω) be a symplectic manifold, namely ω is a closed, non-
degenerate, skew symmetric 2-form on the smooth manifold V . Let Γ be a hypersurface contained in V .
We say that Γ is of contact type if there is a vector field X , defined near Γ, transverse to Γ and pointing
outwards, such that d(i(X)ω) = ω. The 1-form α = i(X)ω is a contact form on Γ and it defines a contact
structure ζ = kerα on Γ.

Let D be a relatively compact domain in an almost complex manifold. The complex tangent space of the
boundary ∂D of D is by definition T J∂D := T∂D ∩ J∂D. If D is strongly J-pseudoconvex, the complex
tangent space T J∂D is a contact structure. More precisely, let ρ be a defining function of ∂D. Since D is
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strongly J-pseudoconvex there exists a positive constant c such that the function ρ̃ = ρ + cρ2 is strictly J-
plurisubharmonic in a neighborhoodU of ∂D and such that ∂D = {ρ̃ = 0} andD∩U = {ρ̃ < 0}. Consider
the one-form dcJ ρ̃ and let α be its restriction to the tangent bundle T∂D. It follows that T J∂D = Kerα.
Due to the strict J-plurisubharmonicity of ρ̃, the 2-form ω := ddcJ ρ̃ is a symplectic form on U that tames
J , T J∂D is a contact structure and α is a contact form for T J∂D. If the boundary ∂D of D is connected, a
theorem due to W.L.Chow [8] states that any two points in ∂D may be connected by a C1 horizontal curve,
i.e. a curve γ : [0, 1] → ∂D satisfying γ′(s) ∈ T Jγ(s)∂D for every s ∈ [0, 1]. This enables to define the
Carnot-Carathéodory metric as follows (see [3, 17]):

dH(p, q) := inf {l(γ), γ : [0, 1]→ ∂D horizontal , γ(0) = p, γ(1) = q} ,

where l(γ) is the Levi length of the horizontal curve γ defined by l(γ) :=

∫ 1

0
LJ ρ̃(γ(t), γ′(t))

1
2dt.

1.4. The Kobayashi pseudometric. The existence of local pseudoholomorphic discs proved in [27] en-
ables to define the Kobayashi pseudometric K(M,J) for p ∈M and v ∈ TpM :

K(M,J) (p, v) := inf

{
1

r
> 0, u : ∆→ (M,J) J-holomorphic , u (0) = p, d0u (∂/∂x) = rv

}
,

and its integrated pseudodistance d(M,J):

d(M,J) (p, q) := inf {lK(γ), γ : [0, 1]→M, γ (0) = p, γ (1) = q} ,

for p, q ∈ M , where where lK(γ) is the Kobayashi length of a C1-piecewise smooth curve γ defined by

lK(γ) :=

∫ 1

0
K(M,J)

(
γ (t) , γ′ (t)

)
dt. The manifold (M,J) is Kobayashi hyperbolic if d(M,J) is a dis-

tance.
Let h be any J-hermitian metric in M and denote by ‖ · ‖h the associated infinitesimal metric. A Brody

curve is a nonconstant J-holomorphic curve from C to M satisfying ‖df‖h ≤ 1. Notice that if D is a
relatively compact strongly J-pseudoconvex domain in (M,J) or is compact, then D contains no Brody
curve if and only if D is Kobayashi hyperbolic.

1.5. Gromov hyperbolic spaces. Let (X, d) be a metric space. The Gromov product of two points x, y ∈
X with respect to a basepoint ω ∈ X is defined by (x|y)ω := 1

2(d(x, ω) + d(y, ω)− d(x, y)). The Gromov
product measures the failure of the triangle inequality to be an equality and is always nonnegative. The
metric space X is Gromov hyperbolic if there is a nonnegative constant δ such that for any x, y, z, ω ∈ X
one has:

(1.1) (x|y)ω ≥ min((x|z)ω, (z|y)ω)− δ.

We point out that (1.1) can be also written as follows:

(1.2) d(x, y) + d(z, ω) ≤ max(d(x, z) + d(y, ω), d(x, ω) + d(y, z)) + 2δ,

for x, y, z, ω ∈ X .

Definition 1.1. Let d and d′ be two metrics on X .

(1) (X, d) and (X, d′) are roughly isometric if there exists a positive constant c such that for every
x, y ∈ X:

d(x, y)− c ≤ d′(x, y) ≤ d(x, y) + c.
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(2) (X, d) and (X, d′) are quasi-isometric if there exist two positive constants λ and c such that for
every x, y ∈ X:

1

λ
d(x, y)− c ≤ d′(x, y) ≤ λd(x, y) + c.

If (X, d) and (X, d′) are roughly isometric then (X, d) is Gromov hyperbolic if and only if (X, d′) is
Gromov hyperbolic. In case we consider quasi-isometric spaces, the spaces need to be both geodesic. This
is provided by the following theorem (see Theorem 12 p. 88 in [14]) which is crucial for us:

Theorem [Gh-dlH]. Let (X, d) and (X, d′) be two quasi-isometric geodesic metric spaces. Then (X, d) is
Gromov hyperbolic if and only if (X, d′) is.

We recall that a metric space (X, d) is a geodesic space if any two distinct points x, y ∈ X can be
joined by a geodesic segment, that is the image of an isometry γ : [0, d(x, y)] → X with γ(0) = x and
γ(d(x, y)) = y.

2. PROOF OF THEOREM 1

The proof of Theorem 1 is based on the Morse theory and more precisely on the fact that the topology
of a domain defined by a Morse function can change only at critical points of the function (see Section I.3
”Homotopy Type in Terms of Critical Values” in [25] for more details). We recall that a Morse function is a
smooth function which Hessian is non-degenerate at its critical points. The Morse index of a non-degenerate
critical point of such a function is the number of negative eigenvalues of its Hessian. A level set {ρ = c}
containing a critical point of the function ρ will be called a critical set and the corresponding value c will be
called a critical value of ρ.

Let D = {ρ < 0} be a relatively compact strongly J-pseudoconvex region. After a small perturbation of
ρ that preserves both the strict J-plurisubharmonicity of the defining function and the number of connected
components of the boundary ∂D = {ρ = 0}, we can suppose that ρ is a Morse function. Hence ρ has a
finite number of critical points denoted by p1, · · · , pr. We denote by kj the Morse index of the critical point
pj , j = 1, · · · , r. Moreover, we can always assume that every critical set contains only one critical point.
We order the critical points in such a way such that the critical values −cj := ρ(pj) satisfy −cj > −cj+1

for j = 1, . . . , r − 1. The number of connected components of D ∩ {ρ = −t} for t ≥ 0 can change
only at a critical level set. More precisely, it is sufficient to describe the topology of D ∩ {ρ = −t} in
a neighborhood of a critical level set near a critical point. We denote by Cj,t ∈ N ∪ {∞} the number of
connected components of the set D ∩ {ρ = −cj + t}.
Lemma 2.1. Under the above assumptions, we have for ε > 0, sufficiently small:

(1) if 2 ≤ kj ≤ n then Cj,ε = Cj,−ε,
(2) if kj = 1 then Cj,ε ≤ Cj,−ε,
(3) for every critical point pj of Morse index kj = 0, there is a neighborhood Uj of pj such that
{ρ = −cj +ε}∩Uj is connected and {ρ = −cj−ε}∩Uj is empty. Moreover kr = 0 and Cr,ε = 1.

Notice that according to this lemma, Cj,t are finite for j = 1, . . . , r − 1 and t ∈ R. In order to prove
Lemma 2.1, we need the following version of the Morse Lemma:

Lemma 2.2. Let (M,J) be an almost complex manifold. Let ρ be a strictly J-plurisubharmonic Morse
function on M . Let p be a critical point of ρ. Then there exist local (not necessarily holomorphic) coordi-
nates z = (z1, · · · , zn), with zj = xj + iyj , centered at p and defined in a neighborhood Uj of pj , such that
one has

(2.1) ρ(z) = ρ(0) +

n∑
j=1

x2j +

n∑
j=1

ajy
2
j +O(|z|3)



GROMOV HYPERBOLICITY FOR THE KOBAYASHI METRIC IN ALMOST COMPLEX MANIFOLDS 5

where aj = ±1. In particular the Morse index of a critical point is smaller than n.

Proof of Lemma 2.2. Let p be a critical point of ρ. We use a normalization due to K.Diederich and A.Sukhov
(see Lemma 3.2 and Proposition 3.5 in [11]). In the associated coordinate system w = (w1, · · · , wn)
centered at p = 0, the Levi forms of ρ at the origin, with respect to Jst and J , coincide. In particular ρ is
strictly Jst-plurisubharmonic at the origin. Then

ρ(w) = ρ(0) +
n∑

i,j=1

aijwiwj + <e
n∑

i,j=1

bijwiwj +O(|w|3),

where A = (aij) and B = (bij) are respectively Hermitian and symmetric matrices. Applying a linear
transformation w 7→ w̃ := Lw, we can reduce A to the identity A = In. Moreover we can make a unitary
transformation w̃ 7→ z̃ := Uw̃ preserving

∑n
j=1 |w̃j |2 and changing the matrix B into a diagonal matrix

U tBU with nonnegative elements (see Lemma 7.2 in [10]). Then the expression of ρ in the z̃ = (z̃1, · · · , z̃n)
coordinates reduces to

ρ(z̃) = ρ(0) +
n∑
j=1

|z̃j |2 +
n∑
j=1

αj<ez̃2j +O(|z̃|3),

where αj ≥ 0 for j = 1, . . . , n. According to the non-degeneracy of the Hessian of ρ at 0, we have αj 6= ±1

for j = 1, · · · , n, and thus we can set xj = (1+αj)
1
2<ez̃j and yj = |1−αj |

1
2=mz̃j which gives (2.1). �

Proof of Lemma 2.1. The content of Lemma 2.1 is purely local. From now on we will denote by Uj a
connected neighborhood of the critical point pj . As pointed out it is sufficient to compute the number of
connected components of the set {ρ = −cj ± ε} ∩ Uj .

Let pj be a critical point of ρ of Morse index 2 ≤ kj ≤ n. In a coordinate system centered at pj given by
Lemma 2.2, ρ can be written

ρ(z) = −cj +
n∑
l=1

x2l +
n∑
l=1

aly
2
l +O(|z|3)

with kj negative coefficients among a1 . . . , an, say for I = {l1, · · · , lkj}. For tε > 0 sufficiently small, the
set {ρ = −cj+ε}∩{

∑
l∈I y

2
l = tε}∩Uj is a perturbation of a (2n−kj)-sphere which varies smoothly with

the real parameter tε. It follows that set {ρ = −cj + ε} ∩ Uj is connected for small positive ε. Moreover,
for t′ε > 0 small enough, the set {ρ = −cj + ε} ∩ {

∑n
l=1 x

2
l +

∑
l /∈I y

2
l = t′ε} ∩ Uj is a perturbation of a

kj-sphere, and thus the set {ρ = −cj − ε} ∩ Uj is connected for small positive ε. This proves (1).
Let pj be a critical point of ρ of Morse index 1. In a coordinate system centered at pj provided by Lemma

2.2, ρ has the form

ρ(z) = −cj +
n∑
l=1

x2l +
∑
l 6=l0

y2l − y2l0 +O(|z|3)

for some l0. The set {ρ = −cj + ε} ∩ Uj is connected whereas the set {ρ = −cj − ε} ∩ Uj is not. This
proves (2).

Let pj be a critical point of ρ of Morse index 0. In a coordinate system centered at pj provided by Lemma
2.2, ρ has the form

ρ(z) = −cj +
n∑
l=1

x2l +
n∑
l=1

y2l +O(|z|3),

and so the set {ρ = −cj + ε} ∩ Uj is connected and the set {ρ = −cj − ε} ∩ Uj is empty. Moreover, since
the domain D is relatively compact then kr = 0. Finally since pr is the last critical point of ρ, the level set
D ∩ {ρ = −cr + ε} is connected and thus Cr,ε = 1. �
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Proof of Theorem 1. Assume by contradiction that the boundary ∂D = {ρ = 0} of D has m connected
components with m ≥ 2. For ε > 0 small enough, D ∩ {ρ = −ε} has m connected components. We claim
that the number of connected components of D ∩ {ρ = −t} stays larger than or equal to m as t → cr,
which contradicts the connectedness of the level sets nearby {ρ = −cr}. According to Lemma 2.1, critical
points of ρ of Morse index kj with 2 ≤ kj ≤ n preserve the number of connected components of level sets
nearby the critical level set {ρ = −cj}. Critical points of Morse index 1 may actually increase the number of
connected components of level sets. Now assume that pj 6= pr is a critical point of Morse index 0 and denote
byDj the connected component ofD∩{ρ ≥ cj−2ε} containing pj . The number of connected components
of {ρ = −cj − ε} ∩Dj is positive otherwise Dj would be a connected component of D different from D
contradicting the connectedness of D. By part (3) of Lemma 2.1, the number of connected components of
{ρ = −cj + ε} ∩Dj is larger than 1 since the index of pj is 0. Hence by connectedness of Dj , there exists
a critical point pj′ ∈ Dj with j′ < j such that Cj′,ε < Cj′,−ε. This implies that Cj′,ε ≤ Cj,−ε.

�

3. PROOF OF THEOREM 2

We state a stronger version of Theorem 2, namely:

Theorem 3. Let D be a smooth relatively compact domain in an almost complex manifold (M,J). We
assume that the boundary ∂D of D is connected and that ∂D is strongly J-pseudoconvex. If D does not
contain any Brody J-holomorphic curve then (D, d(D,J)) is Gromov hyperbolic.

Notice that a relatively compact domain D, defined by a global strictly J-plurisubharmonic function,
does not contain any Brody curves and thus is Kobayashi hyperbolic. Therefore Theorem 2 follows from
Theorem 1 and Theorem 3.

3.1. Proof of Theorem 3. IfD does not contain any Brody J-holomorphic curve then we first point out that
(D,J) is Kobayashi hyperbolic. Indeed, assuming by contradiction that (D,J) is not Kobayashi hyperbolic
we may construct on D a sequence of J-holomorphic discs with derivatives exploding at the centers. Since
∂D is strongly J-pseudoconvex, it follows from estimates of the Kobayashi infinitesimal pseudometric (see
[13]) that such discs do not approach the boundary ∂D of D. Hence by a Brody renormalization process we
construct a Brody curve contained in D, which is a contradiction.

We equip M with an arbitrary smooth Riemannian metric and we denote by dist the associated distance.
For p ∈ D we define a boundary projection map π : D → ∂D by dist(p, π(p)) = dist(p, ∂D) =: δ(p).
Notice that the map π is uniquely defined near the boundary. Set Nε(∂D) := {q ∈ D, δ(q) ≤ ε} where ε is
a sufficiently small positive real number such that π is uniquely defined onNε(∂D) (see [28], Chapter 9, for
the existence of such a tubular neighborhood). We emphasize that the construction of tubular neighborhoods
using the exponential map gives a Riemannian analogue of some Euclidean lemmas in [1] (Lemma 2.1 and
Lemma 2.2 in particular). For points p ∈ D\Nε(∂D), dist(p, ∂D) may be reached at different points. We
pick up arbitrarily a point p̃ ∈ ∂D such that dist(p, ∂D) = dist(p, p̃) and we set π(p) = p̃. The projection
π so defined is not intrinsic but this is not important for our goal.

We define the height of p by h(p) :=
√
δ(p). Then we define a metric g : D ×D → [0,+∞) by:

g(p, q) := 2 log

(
dH(π(p), π(q)) + max{h(p), h(q)}√

h(p)h(q)

)
,

for p, q ∈ D (see [1]). It is important to notice that different choices of a Riemannian metric and of a
projection π give a different metric that coincides with g up to an additive bounded term. This is not a
matter of fact since we deal with roughly and quasi-isometric spaces.
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Z.M.Balogh and M.Bonk proved in [1] that the metric g satisfies (1.2) and thus that the metric space
(D, g) is Gromov hyperbolic. Their proof in the Euclidean space extends directly to the almost complex
case. Hence we have the following:

Lemma 3.1. The metric space (D, g) is Gromov hyperbolic.

However the space (D, g) is not geodesic. In order to construct a geodesic Gromov hyperbolic metric
space, we need to perturb the metric g. The following construction is due to L.Blanc-Centi [5] in R2n. For
p (resp. q) in D denoted by pε (resp. qε) the point on the fiber π−1(π(p)) (resp. π−1(π(q))) with height

√
ε

and let lg(γ) := sup0=t0<t1<···<tn=1

∑n
i=1 g(γ(ti−1), γ(ti)). Then we define a new metric d as follows:

d(p, q) :=



inf{lg(γ), γ : [0, 1]→ Nε(∂D)smooth curve joining p and q} for p, q ∈ Nε(∂D),

d(p, qε) + dist(q, qε) for p ∈ Nε(∂D), q ∈ D \Nε(∂D),

dist(p, q) for p, q ∈ D \Nε(∂D) such that π(p) = π(q),

dist(p, pε) + d(pε, qε) + dist(q, qε) for p, q ∈ D \Nε(∂D) such that π(p) 6= π(q).

Then we have the following:

Proposition 3.1. (i) The metric space (D, d) is Gromov hyperbolic.
(ii) (D, d) is geodesic.

To prove Proposition 3.1 (i) it is sufficient to prove that (D, d) and (D, g) are roughly isometric since
(D, g) is Gromov hyperbolic. The proof of (ii) consists essentially in constructing geodesic curves joining
any two points. The proof of Proposition 3.1 follows [5]. It was obtained there in case M is the Euclidean
space R2n endowed with some almost complex structure. However the arguments remain valid for domains
in an almost complex manifold. For convenience we include the key points of the proof.

Proof of Proposition 3.1. (i) Since (D, g) is Gromov hyperbolic according to Lemma 3.1, we just need to
prove that (D, g) and (D, d) are roughly isometric. It is sufficient to prove that these spaces are roughly
isometric near the boundary, namely that there is a positive constant c such that for all p, q ∈ Nε(∂D):

g(p, q)− c ≤ d(p, q) ≤ g(p, q) + c.

Restricting to Nε(∂D) we define two types of curves in (D,J):
- Normal curves are curves defined on the fibers of the projection. They are purely local objects since

points considered belong to Nε(∂D) and have the same boundary projection (see Lemma 1 in [5]).
- Horizontal curves are curves joining two points p, q ∈ Nε(∂D) with same height h(p) = h(q). They

are defined as follows: since (∂D, dH) is geodesic, we consider a geodesic curve α in ∂D joining π(p) and
π(q). For each t, we consider the point γ(t) ∈ Nε(∂D) in the fiber π−1(α(t)) with height h(p) = h(q).
Then γ defines a smooth horizontal curve in Nε(∂D).

These two kinds of curves being defined for manifolds the proof that (D, g) and (D, d) are roughly
isometric is then straightforward, see [5]. Hence the metric space (D, d) is Gromov hyperbolic.

(ii) The proof that (D, d) is geodesic is achieved by studying the relative positions of any two points
p, q ∈ D. That was first achieved in [1]. By the definition of the metric d, it reduces to the two following
cases.
Case 1. p, q ∈ D \ Nε(∂D) satisfy π(p) = π(q). Then d coincides with the metric dist induced by a
Riemannian metric. Since (D \Nε(∂D),dist) is compact, it is complete and thus according to the Hopf-
Rinow Theorem, it is geodesic.
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Case 2. p, q ∈ Nε(∂D). One can prove that there exists a geodesic curve contained in Nε(∂D), namely a
curve γ : [0, 1]→ Nε(∂D) such that lg(γ) = d(x, y). This is the content of Lemma 4 in [5]. �

Remark 3.1. It follows from the construction of the metric g that the boundary ∂GD of (D, g), as a Gro-
mov hyperbolic space, may be identified with the boundary ∂D of the domain D. The same holds for the
boundary of (D, d) as a Gromov hyperbolic space, since the spaces (D, g) and (D, d) are roughly isometric.

The space (D, d) being geodesic and Gromov hyperbolic by Proposition 3.1, it remains to show that
the metric space (D, d(D,J)) is geodesic and quasi-isometric to (D, d), in order to complete the proof of
Theorem 3. We will use the following precise estimates of the Kobayashi metric obtained in [13]:

Theorem [G-S]. Let D be a relatively compact domain in an almost complex manifold (M,J). Assume
that ∂D = {ρ = 0} where ρ is strictly J-plurisubharmonic in a neighborhood U of ∂D. Then there exists a
positive constant C such that :
(3.1)

1

C

[
|∂Jρ(p)(v − iJ(p)v)|2

|ρ(p)|2
+
|v|2

|ρ(p)|

]1/2
≤ K(D,J)(p, v) ≤ C

[
|∂Jρ(p)(v − iJ(p)v)|2

|ρ(p)|2
+
|v|2

|ρ(p)|

]1/2
for every p ∈ D ∩ U and every v ∈ TpM .

We emphasize that as pointed out in Subsection 1.3, the existence of such a function ρ is ensured as soon
as D is strongly J-pseudoconvex. As a classical consequence of the lower estimate of the Kobayashi metric
(3.1), we obtain the completeness of the metric space (D, d(D,J)). According to the Hopf-Rinow Theorem
(see [18] p. 9) the metric space (D, d(D,J)) is geodesic. Moreover we have:

Proposition 3.2. The metric spaces (D, d(D,J)) and (D, d) are quasi-isometric.

The proof of Proposition 3.2 is essentially given by [1] and remains valid in our setting. For seek of
completeness we include the key steps of the proof.

Proof of Proposition 3.2. Since (D, d) and (D, g) are roughly isometric, it is sufficient to prove that
(D, d(D,J)) and (D, g) are quasi-isometric, namely that there exists two positive constants λ and c such
that for all p, q ∈ D

(3.2)
1

λ
g(p, q)− c ≤ d(D,J)(p, q) ≤ λg(p, q) + c.

This is obtained by considering various cases depending on the relative positions of p and q.
First notice that by integration, we obtain from (3.1) some estimates of the Kobayashi length of curves

near the boundary. There are positive constants C1 and C2 such that for any smooth curve γ : [0, 1] →
Nε(∂D) we have:

(3.3)
1

C1

∣∣∣∣log
h(γ(1))

h(γ(0))

∣∣∣∣− C2 ≤ lK(γ).

Moreover in case γ is a normal curve, the estimates are local since points on γ have the same boundary
projection and γ([0, 1]) ⊆ Nε(∂D). Thus the situation is similar to the Euclidean case considered by [1]
and we have

(3.4) lK(γ) ≤ C1

∣∣∣∣log
h(γ(1))

h(γ(0))

∣∣∣∣+ C2,

increasing C1 and C2 if necessary.
Case 1. p, q ∈ D \Nε(∂D). Since d(D,J) and g are non negative and uniformly bounded on D \Nε(∂D)
we obtain (3.2).
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Case 2. p ∈ Nε(∂D) and q ∈ D \Nε(∂D). By definition we have

g(p, q) := 2 log

(
dH(π(p), π(q)) + h(q)√

h(p)h(q)

)
and thus

log
1

h(p)
− c ≤ g(p, q) ≤ log

1

h(p)
+ c.

Since d(D,J) is uniformly bounded on D \Nε(∂D), we have

d(D,J)(p, q) ≤ d(D,J)(p, pε) + d(D,J)(pε, q) ≤ d(D,J)(p, pε) + c,

for some uniform positive constant still denoted by c. Here pε is the unique point on π−1(π(p)) with
h(pε) =

√
ε (or equivalently δ(pε) = ε). Since π(p) = π(pε), we obtain with (3.4)

d(D,J)(p, pε) ≤ C1 log
1

h(p)
+ C2.

Therefore we obtain the right inequality of (3.2).
Now consider a smooth curve γ joining p and q and let q′ be the first point on the curve with h(q′) =

√
ε.

Let β be the sub-curve of γ joining p and q′. According to (3.3) we get

1

C1
log

1

h(p)
− C2 ≤ lK(β) ≤ lK(γ)

which implies, after taking the infimum over all possible curves γ joining p and q, that 1
C1

log 1
h(p) − C2 ≤

d(D,J)(p, q). Hence we obtain the left inequality of (3.2).
Case 3. p, q ∈ Nε(∂D) and max{h(p), h(q)} ≥ dH(π(p), π(q)). Assume for instance that h(p) ≤ h(q).
We have

log
h(q)

h(p)
− c ≤ g(p, q) ≤ log

h(q)

h(p)
+ c.

Denote by p′ the point in the fiber π−1(π(p)) such that h(p′) = h(q). Then (3.4) provides

d(D,J)(p, p
′) ≤ C1 log

h(q)

h(p)
+ C2.

Consider a horizontal curve γ joining p′ and q. Since dH(π(p′), π(q)) = dH(π(p), π(q)) ≤
max{h(p), h(q)} ≤ ε, the situation is local and thus can be reduced to the Euclidean case. Hence fol-
lowing [1], we obtain

K(D,J)(γ(t), γ′(t))2 ≤ CLJρ((π ◦ γ)(t), (π ◦ γ)′(t))

δ(q)

and by integration

d(D,J)(p
′, q) ≤ CdH(π(p), π(q))

h(q)
.

Since h(q) ≥ dH(π(p), π(q)) we obtain d(D,J)(p′, q) ≤ C. This gives the right inequality of (3.2).
The lower bound, and therefore the left inequality of (3.2), is easily obtained by applying (3.3).

Case 4. p, q ∈ Nε(∂D) and max{h(p), h(q)} < dH(π(p), π(q)). Assume for instance that h(p) ≤ h(q).
We have

2 log
dH(π(p), π(q))√

h(p)h(q)
− c ≤ g(p, q) ≤ 2 log

dH(π(p), π(q))√
h(p)h(q)

+ c.
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Set h0 := min{
√
ε, dH(π(p), π(q))} and denote by p′ (resp. q′) the point on the fiber π−1(π(p)) (resp.

π−1(π(q))) with height h0. As previously, one can show that

d(D,J)(p, q) ≤ C1 log
h0√

h(p)h(q)
+ C2.

by considering a normal curve joining p and p′ (resp. q and q′) and a horizontal curve joining p′ and q′. This
gives the right inequality of (3.2).

Let γ be a curve in Nε(∂D) joining p and q. Set H := maxt∈[0,1]h(γ(t)) = h(γ(t0)) and denote by γ1
(resp. γ2) the sub-curve of γ joining p and γ(t0) (resp. γ(t0) and q).

If H ≥ h0, the left inequality of (3.2) follows immediately by applying (3.3) to the sub-curves γ1 and
γ2. In case H < h0 we follow precisely [1], p. 521-523. Lower estimates of d(D,J)(p, q) are obtained
by considering a dyadic decomposition of the curve γ by height levels and some estimates relating the
Kobayashi lengths of those pieces and the Carnot-Carathéodory lengths of the projected curve π ◦ γ, known
as the box ball estimates (see [26]). The crucial fact used in [1] and that can be applied directly here is that
the size of balls for the Carnot-Carathéodory distance can be approximated by Euclidean polydiscs. This
ends the proof of Proposition 3.2.

�

Finally, Theorem [Gh-dlH] implies that the space (D, d(D,J)) is Gromov hyperbolic which proves Theo-
rem 3. �

3.2. A corollary of Theorem 3.

Corollary 1. Let (V, ω) be a symplectic manifold and let D be a smooth relatively compact domain con-
tained in V . Assume that ∂D is connected and of contact type. Then there exists an almost complex structure
J on V , tamed by ω, for which the following equivalence is satisfied:

(D, d(D,J)) is Gromov hyperbolic if and only if D does not contain Brody J-holomorphic curves.

Proof. Let ζ = Ker(α) be the contact structure on ∂D (see Subsection 1.3). Since ω|ζ is nondegenerate,
there exists an almost complex structure J defined on a neighborhood of ∂D and tamed by ω, such that ζ
is J-invariant and dα(v, Jv) > 0 for all non-zero v ∈ ζ. According to [24] let ρ : V → R be a smooth
function such that ∂D = ρ−1(0) and dρ(X) > 0 where X is given by Subsection 1.3. Then for v ∈ ζ we
have Jv ∈ ζ and Ker(dcJρ|∂D) = Ker(α|∂D). This implies that there is a positive function µ defined in
a neighborhood of ∂D such that ddcJρ = µdα on ζ (see Lemma 2.4 in [24]). In particular ∂D is strongly
J-pseudoconvex. Since ∂D is connected, we may apply Theorem 3 to conclude the proof of Corollary
1. �
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[17] Gromov, M. Carnot-Carathéodory spaces seen from within, Sub-Riemannian geometry, Progr. Math. 144, Birkhauser, Basel,
(1996), 79-323.

[18] Gromov, M. Metric Structures for Riemannian and Non-Riemannian Spaces. Based on the 1981 French original. With appen-
dices by M. Katz, P. Pansu and S. Semmes. Translated from the French by Sean Michael Bates. Reprint of the 2001 English
edition. Modern Birkhuser Classics. Birkhuser Boston, Inc., Boston, MA, 2007. xx+585 pp.

[19] Kobayashi, S. negative vector bundles and complex Finsler structures, Nagoya Math. J. 57 (1975), 153-166.
[20] Kobayashi, S. Hyperbolic complex spaces. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of

Mathematical Sciences], 318. Springer-Verlag, Berlin, 1998. xiv+471 pp.
[21] Kobayashi, S. Projectively invariant distances for affine and projective structures. Differential geometry (Warsaw, 1979),

127-152, Banach Center Publ., 12, PWN, Warsaw, 1984.
[22] Lempert, L. La métrique de Kobayashi et la représentation des domaines sur la boule (French. English summary) [The

Kobayashi metric and the representation of domains on the ball], Bull. Soc. Math. France 109 (1981), 427-474.
[23] Ma, D. Sharp estimates of the Kobayashi metric near strongly pseudoconvex points, The Madison Symposium on Complex

Analysis (Madison, WI, 1991), Contemp. Math. 137, Amer. Math. Soc., Providence, RI, 1992, 329-338.
[24] McDuff, D. Symplectic manifolds with contact type boundaries, Invent. Math. 103 (1991), 651-671.
[25] Milnor, J. Morse theory, Annals of Mathematics Studies 51, Princeton University Press.
[26] Nagel, A., Stein, E.M., Wainger, S. Balls and metrics defined by vector fields I. Basic properties. Acta Math. 155 (1985),

103-147.
[27] Nijenhuis, A., Woolf, W. Some integration problems in almost-complex and complex manifolds, Ann. Math. 77 (1963), 429-

484.
[28] Spivak, M. A comprehensive introduction to differential geometry, Vol. I. Second edition. Publish or Perish, Inc., Wilmington,

Del., 1979. xiv+668 pp.

Florian Bertrand
Department of Mathematics, University of Vienna
Nordbergstrasse 15, Vienna, 1090, Austria
E-mail address: florian.bertrand@univie.ac.at
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