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ABSTRACT. We generalize Lempert’s and Poletsky’s works [11, 14] on the description of extremal
discs for the Kobayashi metric to a higher order setting with k-stationarity condition introduced in
[1].

INTRODUCTION

The Kobayashi pseudodistance was introduced by S. Kobayashi [8, 9] for the purpose of find-
ing a generalization of the Poincaré distance of the unit disc in more general complex spaces. It
turned out later that the Kobayashi pseudodistance is an inner pseudodistance and H. L. Royden
[15] defined an infinitesimal pseudometric, called the Kobayashi pseudometric, whose integrated
pseudodistance coincides with the Kobayashi pseudodistance. Due to their invariance by biholo-
morphisms, the Kobayashi pseudodistance and metric are particularly adapted to study properties
of holomorphic mappings and structures of complex spaces (cf. [10, 6]). In his celebrated paper,
L. Lempert [11] described extremal discs for the Kobayashi metric in smooth bounded strongly
convex domains of Cn as stationary discs and used it to define a canonical representation of such
domains onto the unit ball. Lempert’s work has given rise to studies of the relation between ex-
tremality and stationarity conditions in more general situations (see for instance [14, 5, 13, 16, 3]).
In particular, E. Poletsky [14] proved that the stationarity condition is the Euler-Lagrange equa-
tion corresponding to the Kobayashi extremal problem on bounded domains of Cn defined by C2

plurisubharmonic functions.
In [1], the first two authors introduced a higher order notion of stationarity condition in order

to study finite jet determination of CR automorphisms of Levi degenerate hypersurfaces. Inde-
pendently, the study on higher order Kobayashi metrics has been developed by several authors
[17, 18]. In view of the works of Lempert and Poletsky, it seems natural to study the relation be-
tween generalized stationary discs and extremal discs for higher order Kobayashi metrics. In this
paper, we prove that the stationarity condition introduced in [1] is the Euler-Lagrange equation
corresponding to the higher order Kobayashi extremal problem on bounded domains of Cn defined
byC2 plurisubharmonic functions (Theorem 1). Moreover, we show that on smooth strictly convex
domains of Cn, generalized stationary discs are locally extremal for the higher order Kobayashi
metric (Theorem 3). Note that the present paper is focused on the higher order Kobayashi met-
ric introduced by S. Venturini [17]. A study of the metric introduced by J. Yu [18], by means of
extremal discs, was carried out by M. Jarnicki and P. Pflug in [6].
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1. PRELIMINARIES

For r > 0, we set ∆r = {ζ ∈ C | |ζ| < r} and we denote by ∆ = {ζ ∈ C | |ζ| < 1} the unit
disc in C.

1.1. Jet bundles. Let M be a complex manifold of dimension n. Locally, we identify M with an
open domain in Cn by taking local coordinates (z1, ..., zn). Let U1 and U2 be two open neighbor-
hoods of the origin in C. For two holomorphic mappings f : U1 → M and g : U2 → M and for a
positive integer k, we denote f ∼k g if

f (`)(0) = g(`)(0)

for all ` = 0, ..., k. Obvioulsy, ∼k is an equivalence relation, and the equivalence class of f will
be denoted by Jkp (f), where p = f(0) ∈ M and is called a k-jet at p. The space of all k-jets
at p is denoted by Jkp (M) and we define by Jk(M) =

⋃
p∈M Jkp (M) the k-jet bundle over M .

Then the local coordinate system on M enables us to identify Jkp (M) with (Cn)k by the mapping
Jkp (f) 7→ (f ′(0), . . . , f (k)(0)).

Although the k-jet bundle is not a vector bundle over M unless k = 1, we can still define a
complex multiplication as follows. For λ ∈ C, we set

λ · Jkp (f) := Jkp (fλ)

where fλ(ζ) = f(λζ). Locally, if Jkp (f) = ξ = (ξ1, ξ2, . . . , ξk) ∈ (Cn)k then

λ · Jkp (f) = (λξ1, λ
2ξ2, . . . , λ

kξk).

1.2. Higher order Kobayashi metrics. Let M be a complex manifold. Following S. Venturini
[17], we define for a positive integer k, the Kobayashi k-pseudometric Kk

M(p, ξ) by

Kk
M (p, ξ) := inf

{
1

λ
> 0 | f : ∆→M holomorphic, f (0) = p, Jkp (f) = λ · ξ

}
for any p ∈M and any ξ ∈ Jkp (M). Note thatK1

M is the classical Kobayashi pseudometric defined
on the tangent bundle. From the definition, it is clear that Kk

M(p, cv) = |c|Kk
M(p, v) for any c ∈ C.

The following properties are standard and their proofs are straightforward.

Proposition 1.1. (i) Let M and N be two complex manifolds and Φ : M → N a holomorphic
mapping. Then for any p ∈M and ξ ∈ Jkp (M), we have

Kk
N(Φ(p),Φ∗(ξ)) ≤ Kk

M(p, ξ),

where Φ∗(ξ) = JkΦ(p)(Φ ◦ g), if ξ = Jkp (g).
(ii) Let M be a complex manifold and p ∈ M . Let ξ̃ ∈ Jk+1

p (M) and let ξ = πk(ξ̃) ∈ Jkp (M),
where πk is the canonical projection from Jk+1

p (M) onto Jkp (M). Then we have

Kk
M(p, ξ) ≤ Kk+1

M (p, ξ̃).

As an example, we consider in the case of the unit disc M = ∆ and k = 2. We first need the
following lemma
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Lemma 1.1 (The second order Schwarz lemma). Let f : ∆ → ∆ be a holomorphic function that
f(0) = 0. Then we have |f ′(0)| ≤ 1 and

(1.1) |f ′′(0)| ≤ 2(1− |f ′(0)|2).

Moreover, if the equality holds in (1.1), then

(1.2) f(ζ) = ζϕ(eiθζ)

for some θ ∈ R, where ϕ(ζ) =
ζ + f ′(0)

1 + f ′(0)ζ
.

Proof. The classical Schwarz lemma implies that |f ′(0)| ≤ 1 and if |f ′(0)| = 1, then f(ζ) = eiθζ
for some θ ∈ R. There is nothing more to prove in this case. Now we assume |f ′(0)| < 1. Let
g(ζ) = f(ζ)/ζ . Then the Schwarz lemma implies again that g is a holomorphic function from ∆
into ∆. Let a = f ′(0) = g(0) and let

ψ(ζ) =
ζ − a
1− āζ

, h(ζ) = ψ ◦ g(ζ).

Since h(0) = 0, we have

|h′(0)| = |f ′′(0)|
2(1− |f ′(0)|2)

≤ 1,

which is equivalent to (1.1). If the equality holds in the above inequality, then h(ζ) = eiθζ for
some θ ∈ R. This yields that fζ) = ζϕ(eiθζ) with ϕ = ψ−1. �

Applying Lemma 1.1, we now compute K2
∆(0, ξ) for ξ = (ξ1, ξ2) ∈ J2

0 (∆). Let f : ∆→ ∆ be
a holomorphic function such that f(0) = 0 and

f ′(0) = λξ1, f ′′(0) = λ2ξ2

for some λ ∈ C. By Lemma 1.1 we have

|λξ1| ≤ 1, |λ2ξ2| ≤ 2− 2|λξ1|2.
Therefore,

|λ| ≤
√

2/(|ξ2|+ 2|ξ1|2)

and there exists a disc f of the form (1.2) which attains the equality. This shows that for ξ =
(ξ1, ξ2) ∈ J2

0 (∆), we have

K2
∆(0, ξ)) =

√
|ξ1|2 +

|ξ2|
2
.

Remark 1.1. The following higher order Kobayashi metric was introduced by J. Yu in [18] (see
also [19, 7, 12, 6])

χkΩ (p, v) := inf

{
1

λ
> 0 | f : ∆→ Ω holomorphic, f = p+ ζkΨ,Ψ(0) = λv

}
for p in a domain Ω ⊂ Cn and v ∈ Cn. Note that for ξ ∈ Jkp (Ω) of the form ξ = (0, · · · , 0, v) we
have

Kk
Ω (p, ξ) = χkΩ (p, v) .
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1.3. k-stationary discs. Let Ω = {ρ < 0} ⊂ Cn be a smooth domain, where ρ is a defining

function. We set ∂ρ =

(
∂ρ

∂z1

, . . . ,
∂ρ

∂zn

)
. Let k be a positive integer. Following [1], we define

Definition 1.1. A map f : ∆→ Cn, holomorphic on ∆ and continuous up to ∆, is a k-stationary
disc attached to bΩ if f(b∆) ⊂ bΩ and if there exists a continuous function c : b∆ → R+ such
that the function ζ 7→ ζkc(ζ)∂ρ(f(ζ)) ∈ Cn defined on b∆ extends holomorphically to ∆.

These discs generalize the notion of stationary discs introduced by L. Lempert [11] and are
particularly well adapted to study Levi degenerate hypersurfaces [1, 2]. In fact, in the present
context, we will also need

Definition 1.2. A bounded holomorphic map f : ∆ → Cn is a k-stationary disc attached to bΩ
in the L∞ sense if f(b∆) ⊂ bΩ a.e. and if there exists a L∞ function c : b∆ → R+ such that the
function ζ 7→ ζkc(ζ)∂ρ(f(ζ)) ∈ Cn defined on b∆ extends holomorphically to ∆.

Example 1. Consider the case Ω = ∆. Let

f(ζ) =
k∏
j=1

ζ − aj
1− ajζ

for some a1, . . . , ak ∈ ∆. Let ρ(ζ) = |ζ|2 − 1 be the standard defining function of the unit disc ∆.
Then

∂ρ(f(ζ)) = f(ζ)

and so the function
b∆ 3 ζ 7→ ζk∂ρ(f(ζ)) = ζkf(ζ)

has winding index 0 around the origin. Therefore, there exists a function g defined on b∆ such
that eg(ζ) = ζkf(ζ). Let h be a continuous real-valued function on b∆ for that g + h extends to a
holomorphic function on ∆ and let c(ζ) = eh(ζ). Then

ζkc(ζ)∂ρ(f(ζ)) = e(g+h)(ζ),

which is holomorphic on ∆. Therefore, the disc f is k-stationary.

2. EXTREMAL DISCS FOR THE KOBAYASHI k-PSEUDOMETRIC ARE k-STATIONARY

For v = (v1, . . . , vn), w = (w1, . . . , wn) ∈ Cn, we set

〈v, w〉 =
n∑
j=1

vjwj.

For a domain Ω ⊂ Cn, we denote by Hol(∆,Ω) the space of holomorphic maps from ∆ to Ω, by
H∞(∆,Cn) = Hol(∆,Cn) ∩ L∞(∆,Cn) and by H1(∆,Cn) = Hol(∆,Cn) ∩ L1(b∆,Cn). Let k
be a positive integer.

Definition 2.1. Let Ω ⊂ Cn be a domain. A map f : ∆→ Ω is a extremal disc for the Kobayashi
k-metric for the pair (p, ξ) ∈ Ω× Jkp (Ω) if f(0) = p, Jkp (f) = λ · ξ with λ > 0 and if g : ∆→ Ω

is holomorphic and such that g(0) = p, Jkp (g) = µ · ξ with µ > 0, then µ ≤ λ.
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Note that in case Ω ⊂ Cn is a bounded domain, Montel’s theorem ensures the existence of
extremal discs for any pair (p, ξ) ∈ Ω× Jkp (Ω).

Theorem 1. Let Ω = {ρ < 0} ⊂ Cn be a bounded domain defined by a C2 plurisubharmonic
function ρ. Let p ∈ Ω, ξ ∈ Jkp (Ω) \ {0}. Then any extremal disc f for the Kobayashi k-metric is
almost proper, that is f(b∆) ⊂ bΩ a.e., and k-stationary in the L∞ sense.

The proof follows the variational approach developed by E. Poletsky in [14]. We point out that in
order to describe complex geodesics in complex ellipsoids, A. Edigarian [4] generalized Poletsky’s
theory. It follows from M. Jarnicki and P. Pflug [6] (see in particular Remark 11.4.4), that using
Edigarian-Poletsky theory, extremal discs for the Yu’s kth order Kobayashi metric are k-stationary
in the L∞ sense.

2.1. Poletsky extremal problem. Let Ω ⊂ Cn be a bounded domain defined by a C2 plurisub-
harmonic function. Consider a real-valued functional Φ defined on H∞(∆,Cn) satisfying

(A) Φ is differentiable,
(B) for any f ∈ H∞(∆,Cn), the differential dfΦ of Φ at f is of the form dfΦ(h) =

Re
∫
b∆
〈h, ω〉dθ where ω is holomorphic on C \∆r for some r < 1.

Consider N + 1 functionals Φ0, . . . ,ΦN satisfying conditions (A) and (B) and real numbers
a1, . . . , aN . The Poletsky extremal problem (P) consists in finding f0 ∈ Hol(∆,Ω) which maxi-
mizes Φ0 under the constraints Φj(f) = aj , 1 ≤ j ≤ N , and f ∈ Hol(∆,Ω).

We also recall that, according to the definition given in [14] (see also [4]), real-valued linear
functionals F1, . . . , FN defined on H1(∆,Cn) and of the form Fj(f) = Re

∫
b∆
〈f, ωj〉dθ are called

linearly independent over b∆ if
∑N

j=1 λjωj = g on b∆ for certain λj ∈ R and g ∈ H∞(∆,Cn)

with g(0) = 0 only when λj = 0 for all 1 ≤ j ≤ N and g ≡ 0.

Remark 2.1. In [14], linear independence is actually defined as a stronger property; the condition
g(0) = 0 is omitted. However, an inspection of the proof of Theorem 3 in [14] shows that the
definition above is enough for its application. Note that in [4, 6], linear independence is defined
as well with the condition g(0) = 0.

E. Poletsky proved the following theorem

Theorem 2 (Theorem 3 p. 330 [14]). Suppose f0 is a solution of the extremal problem (P) and
suppose that the differentials df0Φ1, . . . , df0ΦN are linearly independent over b∆. Then:

i. f0 is almost proper.
ii. There exist real numbers λ1, . . . , λN , a L∞ function c : b∆ → R+ and g ∈ H∞(∆,Cn) with
g(0) = 0 such that

N∑
j=1

λjωj + g = c∂ρ(f0)

a.e. on b∆, where df0Φj = Re
∫
〈·, ωj〉dθ for some ωj which is holomorphic on C \ ∆r for

some r < 1.
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2.2. Proof of Theorem 1. Let p ∈ Cn and ξ = (ξ1, . . . , ξk) ∈ Jkp (Ω) \ {0}. We write ξj =
(ξj1, . . . , ξjn) ∈ Cn and for any holomorphic map f : ∆ → Cn, we write f = (f1, . . . , fn). Let
1 ≤ j0 ≤ k be the smallest integer such that ξj0 6= 0.

We formulate the extremality condition as Poletsky extremal problem (P), as follows. For any
j such that ξj 6= 0 we choose linearly independent vectors η1

j , . . . , η
n−1
j (with η`j = (η`j1, . . . , η

`
jn))

such that 〈ξj, η`j〉 = 0 for all 1 ≤ ` ≤ n − 1 . We define, for 1 ≤ h ≤ n, 1 ≤ ` ≤ n − 1 ,
j0 ≤ m ≤ k and j0 + 1 ≤ m′ ≤ k such that ξm 6= 0, ξm′ 6= 0, continuous real functionals on
H∞(∆,Cn):

Φ1
0,h(f) =

1

2π
Re

∫
b∆

fh(e
iθ)dθ, Φ2

0,h(f) =
1

2π
Re

∫
b∆

−ifh(eiθ)dθ,

Φ1
m,`(f) =

1

2π
Re

∫
b∆

〈f(eiθ), η`m〉
ζm

dθ, Φ2
m,`(f) =

1

2π
Re

∫
b∆

−i〈f(eiθ), η`m〉
ζm

dθ,

Φ1
j0

(f) =
(j0)!

2π‖ξj0‖2
Re

∫
b∆

〈f(eiθ), ξj0〉
ζj0

dθ,

Φ1
m′(f) =

m′!

2π‖ξm′‖2
Re

∫
b∆

〈f(eiθ), ξm′〉
ζm′

dθ −
(
Φ1
j0

(f)
)m′
j0 ,

Φ2
m(f) =

1

2π
Re

∫
b∆

−i〈f(eiθ), ξm〉
ζm

dθ.

For all j0 + 1 ≤ m ≤ k such that ξm = 0 and all j0 + 1 ≤ m′ ≤ k such that ξm′ = 0 we define
instead 

Φ1
m,`(f) =

1

2π
Re

∫
b∆

f`(e
iθ)

ζm
dθ, Φ2

m,`(f) =
1

2π
Re

∫
b∆

−if`(e
iθ)

ζm
dθ,

Φ2
m(f) =

1

2π
Re

∫
b∆

−ifn(eiθ)

ζm
dθ, Φ1

m′(f) =
1

2π
Re

∫
b∆

fn(eiθ)

ζm′
dθ.

Lemma 2.1. A holomorphic disc f : ∆ → Ω is extremal for the Kobayashi k-metric for the pair
(p, ξ) = (p, 0, · · · , 0, ξj0 , · · · , ξk) ∈ Ω×Jkp (Ω) if and only if it maximizes Φ1

j0
under the constraints

Φ1
0,h(f) = Re ph

Φ2
0,h(f) = Im ph

Φ1
m,`(f) = Φ2

m,`(f) = Φ2
m(f) = Φ1

m′(f) = 0

f ∈ Hol(∆,Ω).

Proof. Expanding each component of f in its Fourier series, we obtain that the conditions
Φ1

0,h(f) = Re ph, Φ2
0,h(f) = Im ph are equivalent to f(0) = p. Moreover, the choice of the
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vectors η`j implies that, for certain µm ∈ C, f (m)(0) = µmξm for all j0 ≤ m ≤ k whenever
Φ1
m,`(f) = Φ2

m,`(f) = 0 for all j0 ≤ m ≤ k, 1 ≤ ` ≤ n − 1. The conditions Φ2
m(f) = 0, ensure

further that µm ∈ R for all j0 ≤ m ≤ k. Setting µj0 = λj0 , the equations Φ1
m′(f) = 0 amount to

µm′ = λm
′ whenever ξm′ 6= 0, and to f (m′)(0) = 0 if ξm′ = 0. Since then Φ1

j0
(f) = λj0 , a disc f is

extremal if it maximizes Φ1
j0

under the above constraints and f ∈ Hol(∆,Ω). �

Lemma 2.2. The problem in Lemma 2.1 satisfies the conditions of the Poletsky extremal problem
(P ).

Proof of Lemma 2.2. Note that the functionals under considerations are all linear with the excep-
tion of Φ1

m′ for any j0 + 1 ≤ m′ ≤ k such that ξm′ 6= 0. A straightforward computation yields

df0Φ
1
m′(f) =

1

2π
Re

∫
b∆

〈
f(eiθ),

(
m′!

‖ξm′‖2ζm′
ξm′ − Cm′(f 0)

j0!

‖ξj0‖2ζj0
ξj0

)〉
dθ

where

Cm′(f
0) =

m′

j0

(
Φ1
j0

(f 0)
)m′
j0
−1
.

for any j0 + 1 ≤ m′ ≤ k such that ξm′ 6= 0. Now, let e1, . . . , en be the standard basis of Cn and let
f 0 ∈ H∞(∆,Cn). Define for 1 ≤ h ≤ n, 1 ≤ ` ≤ n− 1, j0 ≤ m ≤ k and j0 + 1 ≤ m′ ≤ k such
that ξm 6= 0, ξm′ 6= 0, holomorphic maps C \ {0} → Cn as follows:

ω1
0,h =

1

2π
eh, ω

2
0,h = − i

2π
eh,

ω1
m,` =

1

2πζm
η`m, ω

2
m,` = − i

2πζm
η`m

ω1
j0

=
j0!

2π‖ξj0‖2ζj0
ξj0

ω1
m′ =

m′!

2π‖ξm′‖2ζm′
ξm′ − Cm′(f 0)ω1

j0

ω2
m = − i

2πζm
ξm

For all j0 + 1 ≤ m ≤ k such that ξm = 0 and all j0 + 1 ≤ m′ ≤ k such that ξm′ = 0 we define
instead

ω1
m,` =

1

2πζm
e`, ω

2
m,` = − i

2πζm
e`, ω

2
m = − i

2πζm
en, ω

1
m′ =

1

2πζm′
en.

With these definitions, we have

Φ1
0,h(f) = Re

∫
b∆

〈f, ω1
0,h〉dθ, Φ2

0,h(f) = Re

∫
b∆

〈f, ω2
0,h〉dθ,

Φ1
m,`(f) = Re

∫
b∆

〈f, ω1
m,`〉dθ, Φ2

m,`(f) = Re

∫
b∆

〈f, ω2
m,`〉dθ,
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Φ1
j0

(f) = Re

∫
b∆

〈f, ω1
j0
〉dθ, df0Φ

1
m′(f) = Re

∫
b∆

〈f, ω1
m′〉dθ, Φ2

m(f) = Re

∫
b∆

〈f, ω2
m〉dθ,

from which the conclusion follows immediately. �

In order to apply Theorem 2, it remains to prove the following lemma

Lemma 2.3. For any disc f 0 ∈ H∞(∆,Cn), the linear functionals Φ1
0,h, Φ2

0,h, Φ1
m,`, Φ2

m,`, Φ1
j0

,
df0Φ

1
m′ and Φ2

m are linearly independent on b∆.

Proof. Assume that ξm 6= 0 for all j0 + 1 ≤ m ≤ k (the case when ξm = 0 for some m is simpler).
Using the exact expression of the ω’s obtained in the proof of Lemma 2.2, we need to consider the
vector valued equation on b∆

n∑
h=1

(λ1
0,h − iλ2

0,h)eh +

j0−1∑
m=1

1

ζm

n−1∑
`=1

(λ1
m,` − iλ2

m,`)η
`
m+

1

ζj0

((
j0!λ1

j0

‖ξj0‖
− iλ2

j0

)
ξj0 +

n−1∑
`=1

(λ1
j0,`
− iλ2

j0,`
)η`j0 −

k∑
m′=j0+1

j0!Cm′(f
0)λ1

m′

‖ξj0‖2
ξj0

)
+

+
k∑

m′=j0+1

1

ζm′

((
m′!λ1

m′

‖ξm′‖2
− iλ2

m′

)
ξm′ +

n−1∑
`=1

(λ1
m′,` − iλ2

m′,`)η
`
m′

)
= g

for suitable λ1
0,h, λ

2
0,h, λ

1
m,`, λ

2
m,`, λ

2
m, λ

1
j0
, λ1

m′ ∈ R and g ∈ H∞(∆,Cn) such that g(0) = 0. Since
the Fourier expansion of g is of the form

∑
j≥1 gjζ

j , we have immediately that g ≡ 0, λ1
0,h =

λ2
0,h = 0 for 1 ≤ h ≤ n and λ1

m,` = λ2
m,` = 0 for 1 ≤ m ≤ j0 − 1. Now observe that for all

j0 ≤ m ≤ k the vectors ξm, η1
m, . . . , η

n−1
m are a basis of Cn over C. Indeed, if ξm =

∑n−1
`=1 µ`η

`
m

we would have

‖ξm‖2 = 〈ξm, ξm〉 =
n−1∑
`=1

µ`〈ξm, η`m〉 = 0

which is a contradiction. It follows that λ1
m′ = λ2

m′ = λ1
m′,` = λ2

m′,` = 0 for all j0 + 1 ≤ m′ ≤ k,
1 ≤ ` ≤ n− 1, and finally that λ1

j0
= λ2

j0
= λ1

j0,`
= λ2

j0,`
= 0. �

We are now in a position to apply Theorem 2. We obtain that a disc f which is extremal for
the problem in Lemma 2.1, and thus for the Kobayashi k-metric, must satisfy the Euler-Lagrange
equations

ρ(f) = 0 a.e. on b∆,
n∑
h=1

(λ1
0,hω

1
0,h + λ2

0,hω
2
0,h) + (λ1

j0
ω1
j0

+ λ2
j0
ω2
j0

) +
n−1∑
`=1

(λ1
1,`ω

1
1,` + λ2

1,`ω
2
1,`)+

+
k∑

m′=2

(
λ1
m′ω

1
m′ + λ2

m′ω
2
m′ +

n−1∑
`=1

λ1
m′,`ω

1
m′,` + λ2

m′,`ω
2
m′,`

)
+ g = c∂ρ(f) a.e. on b∆

for a suitable L∞ function c : b∆ → R+ and a certain g ∈ H∞(∆,Cn) such that g(0) = 0. Since
the maps ω are all meromorphic with a pole (of order at most k) only at 0, it follows that the map
ζkc∂ρ(f) extends holomorphically to ∆, hence f is k-stationary in the L∞-sense. This concludes
the proof of Theorem 1. �
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3. k-STATIONARY DISCS ARE LOCALLY EXTREMAL FOR THE KOBAYASHI k-PSEUDOMETRIC

Theorem 3. Let Ω ⊂ Cn be a smooth strictly convex domain. Then k-stationary discs for Ω are
locally extremal for the Kobayashi k-metric.

Proof. We follow here the approach developped by L. Lempert (see Proposition 1 in [11]). Let
f : ∆ → Cn be a k-stationary disc. Let g : ∆ → Cn be a holomorphic m ap, close enough to f ,
such that g 6= f , g(0) = f(0) = p and Jkp (g) = λ · Jkp (f) for some positive λ. We wish to prove
that λ ≤ 1. Due to the convexity of Ω we have a.e. on b∆

Re〈f(ζ)− g(ζ), ∂ρ(f(ζ))〉 > 0

and thus
Re〈f(ζ)− g(ζ), c(ζ)∂ρ(f(ζ))〉 = Re〈ζ−k(f(ζ)− g(ζ)), f̃(ζ)〉 > 0.

This implies that

Re
k∑
j=1

〈
1− λj

j!
f (j)(0)ζj−k, f̃(ζ)

〉
+ Re

∞∑
j=k+1

〈
1

j!
(f (j)(0)− g(j)(0))ζj−k, f̃(ζ)

〉
> 0

and so

Re
k∑
j=1

1− λj

j!

〈
f (j)(0)ei(j−k)θ, f̃

(
eiθ
)〉

+ Re
∞∑

j=k+1

1

j!

〈
(f (j)(0)− g(j)(0))ei(j−k)θ, f̃

(
eiθ
)〉

> 0.

Since Re
∑∞

j=k+1

〈
1
j!

(f (j)(0)− g(j)(0))ζj−k, f̃(ζ)
〉

extends as a harmonic function u on ∆ and
since u(0) = 0, we have

k∑
j=1

1− λj

j!
Re

∫ 2π

0

〈
f (j)(0), f̃

(
eiθ
)〉
ei(j−k)θdθ > 0

which can be written as

(1− λ)

[
k∑
j=1

1 + λ+ · · ·λj−1

j!
Re

∫ 2π

0

〈
f (j)(0), f̃

(
eiθ
)〉
ei(j−k)θdθ

]
> 0.

We have

(1− λ)

[
k∑
j=1

1 + λ+ · · ·λj−1

j!
Re

〈
f (j)(0),

∫ 2π

0

f̃
(
eiθ
)
ei(j−k)θdθ

〉]
> 0,

and therefore

(3.1) (1− λ)Re

[
k∑
j=1

1 + λ+ · · ·λj−1

j!(j − k)!

〈
f (j)(0), f̃ (k−j)(0)

〉]
> 0.

Lemma 3.1. For λ < 1, let gλ(ζ) := f(λζ). Then we have

Re〈f(ζ)− gλ(ζ), ∂ρ(f(ζ))〉 = (1− λ)kλ(ζ)

with kλ(ζ)→ k1(ζ) 6= 0 for all ζ ∈ b∆.
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Proof. The function v = ρ ◦ f is (strictly) subharmonic and negative on ∆, while it vanishes on

b∆. By the Hopf lemma the radial derivative
∂v

∂r
(ζ) is non-vanishing for ζ ∈ b∆. Using the chain

rule we can write
∂v

∂r
(ζ) = ∂ρ(f(ζ)) · ∂f

∂r
(ζ) + ∂ρ(f(ζ)) · ∂f

∂r
(ζ) = 2Re

〈
∂f

∂r
(ζ), ∂ρ(f(ζ))

〉
.

On the other hand

lim
λ→1−

f(ζ)− gλ(ζ)

1− λ
= lim

λ→1−

f(ζ)− f(λζ)

1− λ
= |ζ|∂f

∂r
(ζ),

hence the statement of the lemma follows by setting k1(ζ) =
1

2

∂v

∂r
(ζ) for ζ ∈ b∆. �

Now, we turn back to the proof of Theorem 3. Putting gλ(ζ) = f(λζ), with λ < 1, in place of
g(ζ) in the previous computation, and using Lemma 3.1, we obtain

0 6= lim
λ→1−

Re

[
k∑
j=1

1 + λ+ · · ·λj−1

j!(j − k)!

〈
f (j)(0), f̃ (k−j)(0)

〉]
︸ ︷︷ ︸

Iλ

= Re

[
k∑
j=1

j

j!(j − k)!

〈
f (j)(0), f̃ (k−j)(0)

〉]
.

Due to (3.1) and λ < 1, the terms Iλ are positive and therefore the expression above is positive.
Let then g : ∆ → Cn be any holomorphic map as above which is close enough to f ; in particular
Jkp (g) = λ · Jkp (f) with λ close enough to 1, so that we have

Re

[
k∑
j=1

1 + λ+ · · ·λj−1

j!(j − k)!

〈
f (j)(0), f̃ (k−j)(0)

〉]
> 0,

which implies together with (3.1) that λ < 1. �
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