COMMON BOUNDARY VALUES OF HOLOMORPHIC FUNCTIONS
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ABSTRACT. Let 1, be two disjoint open sets in R?™ whose boundaries share a smooth
real hypersurface M as a relatively open subset. Assume that 2; is equipped with a
complex structure J* which is smooth up to M. Suppose that at each point z € M there
is a vector v € T, M such that Jlv and J2v are in the same connected component of
T,R* \ T, M. If f is holomorphic with respect to both structures in the open sets, then
f must be smooth on the union ©; U M. Although the result, as stated, is far more
meaningful for integrable structures, our methods make it much more natural to deal with
the general almost complex structures without the integrability condition. The result is
therefore proved in the framework of almost complex structures.
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1. INTRODUCTION

In this paper, we study the regularity of boundary values of two functions which are
holomorphic with respect to two complex structures defined on two domains separated by
a real hypersurface. We are interested in the situation where the two functions have the
same continuous boundary values on the hypersurface. Notice that the regularity property
becomes an interior regularity problem when the two structures are the restriction of the
same complex structure, which is well established by the Newlander-Nirenberg theorem;
our results are concerned with a pair of distinct structures. To highlight the relevance of
our problem to yet another classical regularity problem, we recall the edge-of-the-wedge
theorem, which deals with two holomorphic functions on two wedges in C™ that have
the same appropriate boundary values on the edge. Under suitable assumptions on the
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wedges, the theorem concludes that both functions are actually the restriction of the same
holomorphic function defined on a domain containing the edge. The edge-of-the-wedge
theorem, originally due to Bogoljubov, has been extended in great generality by many
authors. For instance, see Rudin [19] and references therein, Morimoto [14], Pinc¢uk [17],
Bedford [1], Straube [22], Rosay [18], Forstneri¢ [7], and Eastwood-Graham [6]. Despite
some similarity between the classical edge-of-the-wedge theorem and our results, the study
of the regularity in this paper apparently gives rise to a new type of boundary regularity
problem even in one complex variable. Our methods are effective to study the case of not
necessarily integrable almost complex structures, and they allow us to deal with a pair of
systems of non-homogeneous equations.
Our main result is the following theorem.

Theorem 1.1. Let 1, be disjoint open subsets of R* such that their boundaries 0",
002 share a C*® smooth real hypersurface M. Suppose that M is relatively open in each
OO, Forl=1,2, let J' be an almost complex structure of class C* on ;U M. Suppose
that at each point x € M, there is a vector v tangent to M at p such that Jiv and J*v
belong to the same connected component of T,R*" \ T,M. Let f be a continuous function
on 1 UM UQy. Suppose that (0, +z'Jl(9xj)f and (0y, + iJlayj)f, originally defined on €,
extend to functions of class C* on QUM forl=1,2 and1 < j <n. Then f is of class
C>® onQ UM.

We will actually prove a more precise version of Theorem 1.1 under finite smoothness
assumptions made on the hypersurface, the structures, and the set of the derivatives of f in
the theorem. We emphasize that we make no convexity assumption on M with respect to
either of the almost complex structures. Therefore, it is not clear if the smoothness of the
function restricted to the hypersurface can be achieved via classical one-sided techniques
such as of Bishop discs; and, although it leads to a loss of regularity, the use of the Fourier
transform appears to be essential in our approach to the boundary value problem. We also
point out that our results in Section 6 for one complex dimension are sharp under finite
smoothness assumptions.

As mentioned earlier, the interior regularity of f for integrable almost complex struc-
tures is ensured by the well-known Newlander-Nirenberg theorem [15] (see also Nijenhuis-
Woolf [16] and Webster [25]). There are results on Newlander-Nirenberg theorem for pseu-
doconvex domains with boundary by Catlin [4] and Hanges-Jacobowitz [9]. See earlier
work of Hill [10] on failure of Newlander-Nirenberg type theorem with boundary.

As an application of our main theorem, let us observe how the common boundary values
arise from the Cauchy-Green operator for 9 in C. Let X = s + a0, with a, |a| < 1, being
a C* function on the closure of a bounded domain {2 with smooth boundary in C. To
seek new coordinates z + f(z) to transform 0 + ad, into a multiple of 0, we consider the
equation

(1.1) O:f +a(2)0.f +b(z) =0, =€l
where b is C* on the closure of €2. To solve it, one considers the integro-differential equation

(1.2) f(2) +T(a0,f)(2) +Tb(z) =0, z¢€ Q.
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Here T' = T§ is the Cauchy-Green operator

1 [ f©Q)
THz) =~ | L5 dgean.
f) =~ | % dedn
The equation (1.2) is equivalent to (1.1) and an extra equation
(1.3) / /(9 d¢ =0, zef.
00 G — 2

When f € C(09), the jump formula implies that (1.3) is equivalent to f being the boundary
values of a function that is holomorphic on € = C\ €, continuous on ¥, and vanishing
at 0o. See Lemmas 6.3 and 6.6 for details. To find a solution f that is C* on € for the
equation (1.1), we would like to invert the operator I + Tad, in C* space for each finite k.
As an application of our main result, we will prove the following.

Theorem 1.2. Let 0 < a < 1 and let Q C C be a bounded domain with C*T* boundary.
Let a,b € C*(Q). There exists €, > 0 such that if ||a|la < €a, then (1.2) admits a unique
solution f € CY**(Q). Assume further that a,b € C***(Q) and 92 € C¥*1** for an integer
k> 0. Then f € CkH1*+(Q). Consequently, the linear map 1+Tad. from CFH1+(Q) into

itself has a bounded inverse.

Theorem 1.2 yields a method to solve the equation (1.2) for boundary regularity of the
solutions. We will prove a version of the above theorem when the equation (1.2) depends
smoothly on a parameter. As a consequence, we will obtain a C* version of the Riemann
mapping theorem for complex structures and simply connected bounded domains with
smooth boundaries in the complex plane which depend (C*) smoothly on a parameter.

Finally, we would like to explain the condition in Theorem 1.1 that Jlv, J?v be in the
same connected component of T,R?*" \ T, M. In one complex variable, this condition is
equivalent to J!, J? defining the same orientation for T,R? when € M. This condition
is also necessary as illustrated by the following counter-example. Let J! be the standard
complex structure defined by 0z on the upper half-plane Q. Let J* be the complex
structure defined by 0., on the lower half-plane 2~. Let M be the real axis, which is the
boundary of both Qt and Q. Let f be a holomorphic function on Im z; > 0 which extends
continuously to QT U M. On Q7 let f(z1) = f(Z1). We can find f which does not extend
as a C! function on QF U M. However, for any integer n > 1, the validity of the assertion
on the smoothness of f has no obvious connection with the orientations defined by J*!, J2.
It is easy to extend the above counter-example to both cases where J!, .J? define the same
orientation or opposite orientations, by adding 0., or Js, to the one-dimensional structures,
when n = 2.

The paper is organized as follows.

In Section 2 we will recall some basic facts about the solution operator T for 0 equations
for bounded domains in the complex plane. We will briefly address the invertibility of
I +Ta0 when a has compact support in a domain §2. The invertibility for this special case
will be used in Section 3 to study the interior regularity of J-holomorphic curves depending
on a parameter.

In Section 3 we give a detailed proof of the existence and the regularity of J-holomorphic
curves which depend on a parameter. The result is due to Nijenhuis-Woolf in [16] for the
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finite smoothness case. We take the opportunity to modify their proof to treat the C* case
in the z-variable, which is not in [16]. However, the authors do not know if the regularity
result holds for C* class in the parameter variable, which is another case left open in [16].

Section 4 contains some elementary estimates for Cauchy integrals for domains depending
on a parameter.

In Section 5, we will prove our main theorem by establishing a more precise finite smooth-
ness version of Theorem 1.1. The main step of the proof is to establish the smoothness of
f on the common boundary M. It is for this step that we need the assumptions on both
structures. Our basic technique is the Fourier transform applied on families of lines, or
straightened curves, in M. We will show that the Fourier transform of f on these lines
will decay uniformly within the families as if f is of the desired regularity. To apply the
two almost complex structures, we will use the flexibility that we can attach two families
of approximate J-holomorphic curves, one for each almost complex structure, to the same
family of the lines in M. After we establish the regularity of f on M, we will obtain the
regularity of f from one side of M by using families of genuine J-holomorphic curves. The
regularity in all variables will be obtained after we establish uniform bounds on the deriva-
tives of f on families of J-holomorphic curves attached to M. We should mention that the
methods of establishing the smoothness of a function via uniform boundedness of its deriva-
tives on families of curves have appeared in other works (for instance see Tumanov [23],
Coupet-Gaussier-Sukhov [5]).

In Section 6 we treat the one complex variable case, by establishing some sharp regularity
results. We will conclude the paper with some open problems.

2. INVERTING [+T A0,

In this section, we will recall estimates on the Cauchy-Green operator T" and 0,7. We
will discuss the inversion of I4+7T A, in spaces of higher order derivatives when A has a
small C® norm. When A has compact support, we can invert I +TA0. and I +T A0, by
direct estimates. This is obtained in this section. In Section 6 we will finish the proof that
I4+T A0, is indeed invertible when A is a suitable scalar function, i.e. Theorem 1.2 is valid.
In fact, we will prove a parameter version for derivatives of any order by using our main
theorem and a method from [16].

We will systematically use the functions that depend on parameters as follows. To prove
Theorem 1.1, we need to build up smoothness of a function via its smoothness on a web
of curves and on uniform bounds of its derivatives on these curves. We will need two
families of curves; one consists of real curves in M and another consists of J-holomorphic
curves intersecting M transversally. We will need to study the Cauchy-Green operator T’
on domains in J-holomorphic curves which depend on parameters. The regularity of J-
holomorphic curves which depend on parameters is given by Proposition 3.7. The estimates
on operators 7' on domains depending on parameters are in Lemma 4.1.

Throughout the paper, when a parameter set P is involved in €2 x P, € is a bounded
open set in a Euclidean space and P is the closure of a bounded open set in a Euclidean
space. We assume that two points a,b in the interior of Q x P can be connected by a
smooth curve in the interior of length at most C|b — al.
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We now recall spaces of functions with parameter defined in [16]. Let C*(Q) denote the
set of functions f such that all partial derivatives of order k are continuous functions on
Q) which extend continuously to Q. The usual norm on C¥+%(Q) is denoted by | - |p1q. For
integers k,7 > 0 and 0 < o < 1, we define Chtei (Q, P) to be the set of functions f defined
on  x P such that for all integer 0 < [ < j, the map t + 0 f(.,t) is continuous from P
into C¥(2) and such that

R l .
I ks : Juax sup 10, f () [p4a < 00.
Define
CI(Q, P) = (| CH(Q,P), C®I(Q,P):=C>(Q,P).
k=1

To simplify notation, the parameter set P will not be indicated sometimes.
Let €2 be a bounded domain in C. The 0 solution operator T and S = 0,1 are

(2.1) Tf(z):= %/ﬂ ;(—OC dédn, Sf(z):= —%p.v./ﬂ(z]c_(—cg)?dfdn.

It is well-known that 9;T' is the identity on LP(€2) when p > 2. Assume now that 0 < v < 1.
When f € C*(Q2) and 99 € C'™*, one has

L [ f(©)—f(2) f(Z)/ d¢
2.2 — | L S _ _
> 16 == | S e [ 7
If f has compact support in €, or if f € C¥**(Q) and 9 € C*+1+ then
(2.3) T fles11a < Crrrral flirar  [Sflera < Criival flita-

See Bers [2] and Vekua [24] (p. 56). The above estimates for domains with parameter will
be derived in Section 4. Recall that

where the first identity needs f to have compact support in 2.
For f € C*i(Q, P), define T'f(z,t),Sf(z,t) by (2.1) and (2.2) by fixing the parameter
t.

Lemma 2.1. Let k,5 > 0 be two integers and let 0 < a < 1. Let 2 C C be a bounded
domain with 0 € C*H1+e. Then

T: CHI(Q, P) = CHHI(Q, P),  |ITfllktvas < Crrvall Fllisass
(2:5) §: CErI(Q, P) = CI(Q, P), [[Sf llkas < Crvrvallfllksas
for some positive constant Cri14q-

Proof. By (2.2), we get S(C*7) c Ck. We can verify that 9,5 = S, on C*J for j > 1.
Thus S(Ck+e7) ¢ Ck+oi by (2.3).

The Cauchy kernel is integrable. So T(C%/(Q, P)) c C%(Q, P). Also 8,T = T, on %
for j > 1. The rest of assertions follows from 0,7 = S and T = L. O

By an abuse of notation, we define 0, f = 0. f.
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Lemma 2.2. Let k, j > 0 be two integers and let 0 < o < 1. Let § be a bounded domain
in C. Let A € C**I(Q, P) be an m x m matriz. There exists ¢, > 0, depending only on
a, such that the following hold.

(i) If 00 € C** and |Alao < €qa, then
[+T A9, 1+TAD,: [C*TI(Q, P)]™ — [C*F1(Q, P)]"™
have bounded inverses.
(17) If A(-,t) have compact support in Q for allt € P and |Alao < €, then
[+TA9., 1+TAD,: [CHHi(Q, P)]™ — [CFHei(q, P)]™
have bounded inverse.

Proof. We want to show that the inverse of [ +7T'A0, is given by
L=1+) (-1)/(TA0.)"
=1

Since (T'AJ.)! = TA(SA)'719,, we need to show that the norms of (SA)!=! for various
derivatives tend to zero sufficiently fast. When S operates on functions with compact sup-
port, it commutes with 0;, 0., 0 somewhat. However, differentiating the operator product

(SA)! requires counting terms efficiently as [ tends to oo.
(7). Fix 0 < 6 < 1/2. Note that

1fgllk+eas < Crjll Flleraillgllias:
By (2.5), we have ||SAla0 < CL||A|la0. Thus,
1(SA) a0 < (CallAllao)’ < '
if ||Al[a,0 is sufficiently small. Then
ITASA) 0. fllhsao < Cab ™| Allaoll fll1+a0-

This shows that for f € C'**0, the series 7° (—1)'TA(SA)19.f converges to Lf €
C'te0 Moreover, ||Lf|l14a0 < C|lfllisao. It is straightforward that L(I+TA3,) and
(I+TAd,)L are the identity on C'**°. This verifies (i) for j = 0. The case of j > 0 will
follow from the argument in (i7) below, by using 9,7 = T'0; and 9,S = S0;.

(43). We need to show that > [|(SA)!||x+a,; converges when A has compact support in
Q2. Denote by Ciia; a positive constant depending only on k, j, and ||Al|x1a,;. By (2.4)
and 0,8 = S0, we can write

0SA = S0A,
where S is either S or I, and 8, d are of form 8,, ds, or 8;. Denote by 0¥ a derivative in z,
z of order |K|. Then 9(SA)! equals a sum of terms of the form

Sml(aKlA) st Sml(aKlA)aKHl, |K1| + ttt + |Kl+1’ — 1

Here S,,, is either S or I; in particular, ||Sy, |lk+a,;j < Ckta,; for all m;. The sum has at
most [ + 1 terms. Thus 0%/ (SA)" is a sum of at most (I + 1)1 terms of the kind

(2.6) S (010 A) - - 8., (05101 A) S, 0% 11 0,4
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Assume that |K| < k,|I| <jand !> k+ j. With C, > 1,
1050 ((SAY Hllao < 1+ DO+ [ Allkrag) 1 Allao ™ 1/ k+as
< (14 D" Criagll a8~
This shows that [[(SA) [[k1a; < Chpa, (0 + 1767577, Hence
ITA(SA) O:lis1+a, < Crrag(l+ 1),

We conclude that [|(I+7A49,) |kt14a; < 00

The proof for I+T A0, is obtained by minor changes. Indeed, denoting by Cf = f
the complex conjugation, we write (T'49,)! = TAC(SAC)"10,. We have 0,C = C9; and
0-C = C0,, and since we may assume that ¢ are real variables, we also have 0,C = C0,.
Thus 050} (SAC)™ is a sum of at most (I + 1)Kl terms of the form

S (0510 A)C' -+ S, (0710 A)CON11 0,4
Substitute the above for (2.6). The remaining argument follows easily. O
We need a simple version of Borel theorem with parameter.

Lemma 2.3. Let N be a positive integer or co. Let 0 < j < oo be an integer and
0 < a < 1. Let ¢ be positive numbers for 1 < k < N and let ey = 0 for N < o0.
Let f; € CN=1-M+ei(R™ PY for 0 < |I| < N with I = (iy,...,in). Assume that all
fr(-,t) have support contained in a compact subset K of the unit ball B™. There exists
Ef € CN-"oi(R" x R™, P) such that IEf(x,0,t) = fi(z,t). Moreover, Ef(-,t) have
compact support in the unit ball of R™ x R™ and

(2.7) IEfllkray < €ri1 + Onpx Z | frllk—irtag, 0 <k<N.
[11<k

Here Cn i, depends also on ey, ..., €, and the upper bound of || fr|lk—i1j+a,; for [I| < k.

Proof. We extend f one dimension at a time. Start with m = 1. We consider an extension
of the form

!
Yy _
(28) Ef(.T, Y, t) = Z T!gl(x? t)g(él 1y)7
I<N
where g is a smooth function of compact support in (—1,1) and g(y) = 1 for |y| < 1/2.
We will also choose &; which decreases to 0 so rapidly that Ef is in CV~1*%J and (2.7)
holds. Here y'g,(z,y,t) is a substitute of ' f;(z,t) such that y'g,(x,y,t) is in CN 71T, We
also need the correct I-th y-derivative of y'g;(x,y,t) due to the presence of y' gy (x,y,t) for
<1
Denote by Bj the open ball in R" centered at the origin with radius 0 < ¢ < % dist(K,0B").
Let ¢ be a smooth function on R"™ with support in By satisfying [, ¢(y) dy = 1. With

a; € CN=174J to be determined, consider

gi(x,y,t) = /n a(z —yz,t)p(z) dz.
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Fix t. We first consider | < k < N. For |I| = k and y # 0, we have

(2.9) Wz y.t) = > Cuzﬁélylﬁb/az(ﬂf—yz,t))sb(Z) dz
i1+‘12|:k
with iy <. Write Iy = I3 + Iy with |I3| = k — [ and |I4| = [ — i;. We have
O gl t) = 3 [ Oule—yzt)oru()ds
|L|=|I3]

for some ¢y, with support in By. When y # 0, changing variables and taking derivative

0" we get
8fzgl x Y, t Z /yu |+na @l z t)¢]3[4L( ) dz.

|L|=|15]
Changing variables again, we get

Y4l ol g (2,9, 1) /@ a(x — yz,1)dr,1,.(2) dz

|L|=|15]

The right-hand side and its derivatives in ¢ of order at most j are clearly continuous
functions. Then by (2.9), by(z,y,t) := y'gi(x,y,t) are of class C¥+*J for [ < k. This shows
that b, € CVN~=17%J for all I. By the product rule, at y = 0

(%bl(x,y,t) = llay(z, 1), agby(x,y,t) =0, I'<l.

Starting with ap = fo, we find a; € CVN-1"* inductively such that 0> <y bu(,y,t)
equals ! fj(x,t) at y = 0. We also have
[belli+as < Crxclladla:
Without loss of generality, we may assume that ¢ decreases. We choose small §; with
0 < & < 1/m such that by(x,y,t) := y'g(z,t)g(5; 'y) satisfies
ol < 2760

Let Ef be defined by (2.8). The estimate (2.7) is then immediate and Ef is in N~ 1+
and satisfies 0L Ef (z,y,t) = fi(x,t) for | < N.

For m > 1, set y = (v, ym) and ¥ = (y1, * , Ym— 1) Suppose that we have found
extensions f; € CN~17@i(R* x R™~!, P) such that ol fi=fraty =0forall [I'| < N—I
and

(2.10) 1 fillk—tvos < €hire + Crr > frllimipi—thag, k<N,
|1 |<k—t

where ¢} ;- > 0 will be determined later. Moreover, assume that fi(-,t) have support in a
compact subset K’ of the unit ball of R**™~! where K’ depends only on K. Using the
one-dimensional result again, we get Ef € cN ~Hei(R™ x R™, P) with compact support
in the unit ball of R™"™. Furthermore, (%nE f=f aty, =0 and

|Efllktay < €1 i+ Crx Z ||J?l||kfl+a,j7 k<N.

0<i<k
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Choose €}, x > 0 small enough to ensure that combining the above inequality with (2.10)
yields (2.7). O

The above proof for non-parameter case is in [11] (pp. 16 and 18). When f is defined on
Yn < 0 with 8§nf = fr on y, = 0, the above extension Ef can be replaced by f on y, <0.
The same conclusions on Ef hold. Seeley [21] has a linear extension £: C*(R';) — C®(R")
such that E: C*(R.) — C*(R") have bounds depending only on k.

3. J-HOLOMORPHIC CURVES AND DERIVATIVES ON CURVES

This section is mainly devoted to the study of J-holomorphic curves with parameter. The
result is essentially in the work of Nijenhuis-Woolf [16]. See also Ivashkovich-Rosay [12]
for another regularity proof and existence of J-holomorphic curves with prescribed jets.
The proof below relies only on some basic facts about the Cauchy-Green operator and the
inversion of | +TA8_< discussed in Section 2. We also study how to obtain the smoothness of
a function from its smoothness on a web of curves and uniform bounds of its derivatives on
the curves (see Proposition 3.9). This result will be one of main ingredients in the proof of
Theorem 1.1. Our results are local. Throughout the paper, a real hypersurface M will be
a relatively open subset of the boundary of a domain 2 C R*", or a closed subset without
boundary in the domain.

Definition 3.1. Let £ > 0 be an integer and let 0 < o < 1. We say that an almost complex
structure J of class C** on Q (resp. QU M) is defined by n vector fields X1, ..., X, if X;’s
and their conjugates are pointwise C-linearly independent on € (resp. QU M) and X;’s are
of class C** on Q (resp. QU M).

Note that for p € Q, J, := J(p) is defined to be the linear map on T, (resp. T,(QUM))
such that v+iJ,v is in the linear span of X;(p), ..., X, (p) for any v € T, (resp. T,(QUM)).
The operator norm ||A|| of a linear map A : 7,02 — T, is defined as max{|Av|: |v| = 1}

with [ad, + 09,] = (327, |ar|? + |bi|?)2 being the Euclidean norm on T,

Definition 3.2. We say that a diffeomorphism ¢ transforms Xj,..., X, into X1, X,
if dp(X;) are locally in the span of X7,..., X,,.

A linear complex structure J on R?" is given by

(31) Xl = Z (bls&zs +a15823), l = 1, o, n,

1<s<n

where constant matrices A := (a;5) and B := (b;5) satisfy
B A
‘z F' 70

The map z = wB +wA transforms Jg,, . .., 0y, into X1, ..., X,, and hence J,; into .J given
by

- » (0 1 _ (Re(B+A
(32) J = KJstK ) ‘]St - (_I 0/’ K= Im (A + B

=
)
vy
|
=
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Thus under a local change of coordinates by shrinking 2 or 2 U M, an almost complex
structure J is locally given by

(3.3) Xi=0,+ Y ay(2)d.,, l=1,..n,

1<s<n

where the operator norm of A = (a;,) satisfies ||A(2)|| < 1 on Q (resp. QUM). Conversely,
notice that the condition ||A|| < 1 ensures that n vector fields of the form (3.3) define an
almost complex structure.

In the next lemma, we give a quantitative condition and a geometric condition, with
each ensuring the assumption made on the two almost complex structures in Theorem 1.1.

Lemma 3.3. Let J', J? be two linear complex structures on R**. Let M be a hyperplane
in R*™.If ||J? — JY| < 2 or if ToM N JYTyM # ToM N J*TyM then there exists v € TyM
such that J'v, J?v are in the same connected component of TyR** \ Ty M .

Proof. Denote by To(M, J") = ToM N JYTyM the J'-holomorphic tangent space at the
origin for [ = 1,2. Let wy,ws be the two connected components of TyR?" \ TyM. Note that
J' sends one of two connected components of TyM \ To(M, J') into w; and the other into ws.
Thus the assertion is trivial if To(M, J*) # To(M, J?). Assume that they are identical. By
choosing an orthonormal basis for TyR?", we may assume that Ty(M, J*) = {z,, = y,, = 0}.
Since M contains x, = y, = 0, then M is defined by ax, + by, = 0 with a® + > = 1.
After a change of orthonormal coordinates, M and Ty(M, J') are defined by y, = 0 and
T, = y, = 0 respectively. We still have ||J? — J!|| < 2 since orthogonal transformations
preserve the operator norm. Now write

0. 0. ) 9. )
o) =n) 1 Gr)=als) 2
By "\o, 8y, "\ o, "\o,,

where By, Cy, D; are real matrices, ©’ = (21, ,2,-1) and ¥ = (y1,-*+ ,Yn_1). In particu-
lar, D} = —1. We want to show that the coefficients of 9,, in J'0,, have the same sign.
Otherwise, we can write

ay b ag  —by
D, = 1+a? ) D, = 1+a3 s by > 0, by > 0.
5 —W 5, a2
Since ||Dy — Dy|| < 2 we have by + by < 2 and b;' + by' < 2 which is a contradiction. [

It is easy to see that when n = 1 the condition that J'v and J?v to be on the same side
of M for some v € TyM is equivalent to that J!, J? define the same condition for R%. In
higher dimensions, whether J!, J? define the same orientation or not is not related to the
validity of assertions in Theorem 1.1.

Example 3.4. Lemma 3.3 and Theorem 1.1 fail easily for the triplet
{Jst7 _Jst7 {3/1 = O}}

Note that Ji; and —J define the same orientation if and only if n is even. On the other
hand, Theorem 1.1 is valid for

{Jat, JZ x (=J72), {yp = 0}}.
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Here J2F denotes the standard complex structure on R*. A less trivial example is given
by the following. Let 0 <t < m, and let J* be defined by
X! = (costd,, +sintd,,) +1i0,, X5= (—sintd,, +costd,,)+id,,.

The conclusions in Lemma 3.3 and Theorem 1.1 fail for {J°, J™, {y, = 0}} with ||J°—J"| =
2. Under new orthonormal coordinates w; = (zy + iy1)/V2, wy = (—x1 + iya)/V/?2, J' is
given by

(1 +sint)0z, — costdz, — (1 —sint)0y,, — cost Oy,,

cost Og, + (1 + sint)0g, + cost Oy, — (1 —sint)0y,.

The above can be put into the form (3.3) with
0 ___cost
At — ( cost 1+sint) .
1+4sint 0

Note that ||A*|| < 1. However, the authors do not know if Theorem 1.1 or Lemma 3.3 holds
for two structures J*, J% of the form (3.3) with corresponding ||A!|| < 1 for I = 1,2. Note
that such an almost complex structure preserves the standard orientation of C".

Definition 3.5. Let J be an almost complex structure defined by vector fields Xy, ..., X,
of class C¥** on Q with £k > 0 and 0 < o < 1.

(1) A C" map u: D — Q is called a J-holomorphic curve if du(d¢) is in the span of
Xy, , X,, namely if
du(9) = V(C) - X(u(C)) = Vi(¢) - Xa(u(Q)) + -+ + Va(Q) - Xu(u(())-

(i1) Let k > 1. A C! map u: D" — Qis called an approximate J-holomorphic curve of
order k attached to the curve u(z,0), if

(3.4) du(9z) = V(¢) - X (u(¢)) + F(Q) - X (u(C)), |F(¢)] = of| Im¢[*1).

As emphasized earlier, we may assume that J is locally given by vector fields of the form
(3.3). Therefore locally, a J-holomorphic curve u: D — € satisfies the following equations

Oruy = Z ajs(w)Ocus, 1l=1,...,n
1<s<n
which can be written as a row vector
(35) O = DuA(u),

Note that one cannot prescribe the boundary for a .JJ-holomorphic disc. However, we can
prescribe the boundary of the approximate J-holomorphic disc, defined above. This fact
will be used in the proof of Theorem 1.1. Also, notice that if f is a function on €2 and w is
an approximate J-holomorphic curve the above equation (3.4) implies that

Oe(f(u(€)) = V(C) - (X )(u(C)) + F(C) - (X F)(u(C))-
When w is J-holomorphic, this identity becomes

O0z(f (u(¢)) = (Xf)(u(C)) - deu.

The next two results deal with the existence of the two types of curves in Definition 3.5.
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Lemma 3.6. Let k£ > 0 be an integer or k = oo, and let 0 < o < 1. Let J be an almost
complex structure of class C***(Q) defined by vector fields

Xl: Z bls&zs‘{' Z alsazs, lzl,...,n.

1<s<n 1<s<n

Set A = (a5) and B := (bs). Let k' >0 and 0 < j < 0o be such that j + k' < k, and let
0<r <1 Let K be a compact subset of Q and assume that ug: (—1,1) x P — K is a
map of class C¥+1+%1((—1,1), P). Then there exists a map u: [—r,7] x [6,6] x P — Q of
class CF+14ed ([—r, r] x [=0,0], P) satisfying the following:

(i) u(x,0,t) = uo(x,t) and

6) du(aZ) = V(C7t> ’ X(“((’t)) + F(Ca t) ’ X(“(Cat»a
) IF(C D= o(lyl*), a=0; [FC O] =0(y*™), 0<a <1,

where ( = x + 1y.
(i1) Let ejiyqy > 0. On [—r,r] X [=§,0] x P the norms of u,V and F satisfy

ltlljrsrag + 1V E)ljrsay < Cjrpymax(luolljrivag luolliiiie,) + erer, 7' <K + 1.
% X : B A
Moreover, Ci(1+ [lug|l10)d > 1 and C},,; depends on K,Q, |J|j1j1a and infg = B"

Proof. We suppress the parameter ¢ in all expressions. We first determine a unique set
of coefficients aj(x) for 1 < j' < k' + 2 such that as a power series in y, u(z,y) =
up() + D s Ay (z)y" satisfies (3.6)-(3.7). It is convenient to consider u as the real map
(z,y) = (Reu,Imu) still denoted by u, and to rewrite the equations as

(3.8) du(9,) = J(u)(du(d,)) + Fi(z,y) - 0.,  Fi(w,y) = o(ly").

Here 0, = (Ouy, ..., 0y, ) is evaluated at u((,t). In the matrix form, let J be the matrix
defined by (3.2). Then we need to solve

Oyu = Opud (u) + Fa(x,y), |Fal(z,y)| = o|yl").

We solve the equation formally, which determines aj () uniquely for 1 < j" < k' + 2, and
then apply Lemma 2.3. This gives a map u : ([—r, ] x [<1,1]) x P — R™ of class C¥'*1+i
satisfying the stated norm estimate in (iz). By |u(z,y) — u(z,0)| < C§(||luoll1.0 + €1)|y| and
the compactness of K, we find 6 > 0 such that u maps [—r,r| X [=0,d] x P into . We
have obtained (3.8). Thus

2du(07) = du(9,) + idu(9,) = du(0y) + iJ (u)(du(0)) + iFi(x,y) - Os.

Note that du(d,) + iJ(u)(du(d,)) = Vi(z) - X (u(z)). Write 9, in terms of X;’s and X’s
by using the inverse of <§ %) where A and B are given by (3.1). We get (3.6) and (3.7).

Finally we can estimate the norms of V' and F' via V;, Fi, F5 and the inverse of (g g) g
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In Section 2, we have defined C¥**J and || - ||x1a,. Following [16], we define for j < k
and 0 <a<1
CHeI(@Q,P) = () C"NQP),  Julpsay = max [[ufi—iray-

0<I<j
0<1<j

We also define
CI(Q, P) = [ CH(Q, P).

k=1
One can see that (CF**7(Q, P),|.|t1a,;) is a Banach space. By assumptions on 2 and P,
we have

CHrek(Q, P) o CF(Q x P).

In particular, if f € C**7 N C! and u € C**7(Q, P), then f ou € CF+*J(Q, P) whenever
the composition is well-defined. In general, for ¢(z,t) = (@(z,t),t) with ¢ being a map
from Q x P into Q' of class C***/ N C', we have

V0 @lrras < C(L+ 1810 + |@lkra) TV ktay-

Let D be the unit disc in C, D, the disc of radius r > 0, and D} =D, N{Im z > 0}. The
following result gives coordinate maps in J-holomorphic curves. To estimate the Cauchy-
Green operator T' on domains in J-holomorphic curves, we will also need to reparametrize
the J-holomorphic half-discs, which are obtained by cutting a J-holomorphic disc by the
real hypersurface M. The reparameterization, which is not necessary .J-holomorphic, is
given by a mapping R(-,t) which send ﬁ:r onto the half-discs. The existence and regularity
of J-holomorphic curves for finite smoothness case is proved by Nijenhuis and Woolf ([16],
pp. 459-460). They also stated a version of J-holomorphic curves with parameter passing
through the same point ([16], p. 461). Since the following precise result is needed for our
main results, we prove it in detail. We will also deal with C* structures.

Proposition 3.7. Let £k > 1 be an integer or k = oo and let 0 < a < 1. Let 7 < k
be an integer. Let J be an almost complex structure of class C*+ defined on Q by vector
fields X1,---,X,,. Let M C Q be a C¥T1*® real hypersurface containing the origin 0. Let
e: M — C" be a C* map such that e- X = e1 X1 + -+ + e, X, is not tangent to M at each
point of M. Then there exist two C’ diffeomorphisms u and R from D" onto their images
in Q) satisfying the following:
(i) For each t € D", u(-,t) is J-holomorphic and embeds D, onto D(t).
(17) w(0,t) € M and D(t) intersects M transversally along a curve y(t). Also, u(0) =0
and du(0,t)(0z) = (e - X)(u(0,1)).
(i7i) R(-,t) respectively sends D, (—r,7),D, into QTN D(t), MND(t), D(t) and satisfy
R(0) =0.
(iv) Moreover u and R are in CKH1Tei(D, Dr1).

Proof. Since the result is purely local, we may assume that

X =0z + Z ais(2)0,,, l=1,...,n,

1<s<n
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where A := (a;,) satisfies A(0) = 0 and [|A(2)]] < 1 on Q. Applying a unitary change of
coordinates, we may assume that 7oM = {y,, = 0}. By a C*"™'** change of coordinates
which is tangent to the identity, we may assume that M is in y,, = 0. By dilation, we may
assume that € contains D} and that on it we have ||A(2)| < 1/4 and |A|j 1140 < 1/C..
Here C, will be determined later and
J =max{0,j — 1} < k.

Finally, by a dilation in the unit disc D, we achieve ||e||cian < 1/4.
Step 1. Existence of a solution u in class 7'+t

At the origin, X;(0) = ds,. Let é1,...,é,_1 be the standard basis of C"~! x {0} and set

P = @?/_én). It follows from the assumption made on e - X that é;,...,¢é, 1, e(t,0) are
C-linearly independent.

Recall that u : D x P — € is such that u(-, ) is a J holomorphic disc for all ¢ € P if and
only if u satisfies the equation

(3.9) Ou = euA(u).

Denote by B; the closed unit ball of the Banach space B := [C/' T+ (D, P)]* equipped
with the norm |.|;4144 7. By an abuse of notation we will drop the exponent n in the rest
of the proof. Consider for u € 81

(3.10) W(u)(C,t) = ( +Ce(t,0) + [@(u) — P (u)](¢, 1),

0)
where ®(u) := Tp(OuA(u)) and Pi®(u)(¢,t) == ®(u)(0,t) + (I:®(u)(0,t). One can verify
that W(u)(0,t) = $(¢,0) and 0¥ (u)(0,t) = e(t,0). Therefore, if u = ¥(u) then u(.,t) is
a J-holomorphic disc satisfying u(0,t) € M and du(0,t)(0z) = (e - X)(t,0). According to
Lemma 2.1, ® maps B; to B. Moreover P;®(u) is of class ¢’ in t and is a polynomial in (.
In particular, P;®(u) and W(u) are in B. Moreover since |A|j 4144 < 1/Cy on Dy x P, the
map WV is a contraction from B; into itself. Indeed, we have

Aug) — Auy) = /01{(u2 —uy) - (OuA)(uy + s(ug — uyq))
+ (W — W) - OgA(ur + s(uz — w1))} ds,
(3.11) | (uz) — @ (1) 4140, < ClOcuzAus) — Jeur A(un) |jr 4y
< (1 |(ug, ua) 152 s )AL 14 ue — ] jrsrga

Notice that here we need A to be in C7' 1+ instead of C7'+*. And j/+1=kif j/ =k — 1.
We also have

[Pr®(uz) — Pr@(u)|js14ay < ClP(uz) — P(ur)jr1a,
Recall that after dilation, |A|j 1110 < 1/Ci. It follows that ®(u) and P;(®(u)) have small
norms on B;. Thus, ¥ is a contraction map on B; into itself and therefore it has a fixed
point u € By.
Step 2. Regularity of v in class Cltek for finite k.
This step is the most subtle step of the proof and certainly less classical than the others.
We follow the arguments in [16]. This type of arguments has also been used in the Dirichlet
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and Neumann problems on planar domains with parameter [3], including the C* case. Here
we need to restrict to spaces of finitely derivatives as in [16].

In this step, we assume that k is finite and j = k = j' + 1. We have proved that
u € By C CF+=1(D, P). In order to prove that u € C*1+** e first need to show that
O € (?Ha’o(ﬁ, P), namely that u is k times differentiable in the t-variable, that ¢t — 9Fu
is a continuous map from P to C*(D) and that |0Fu(-,t)|; 14 is uniformly bounded. We will

then show that u € C2+**~1 which will be achieved in the next step by shrinking .
Recall that u satisfies U(u) = u where ¥ is defined by (3.10). Rewrite u = ¥(u) as

u=h+®(u)— P d(u),
O(u) = T(QuA(u), Pr®(u)(C,t) = 2(u)(0,t) + (O P(u)(0, ),

where T = Tp, h is holomorphic in ¢ and of class C* in ¢, and hence h € Ckt1+t*k By
differentiating £ — 1 times the previous equation in the t-variable, we obtain

(3.12) v="TA(u)v — P, TA;(u)v + B_1(u).

Here v := 9f ~'u € C'**(D), P) and

Ay (u)v = OvA(u), when k = 1;
Ay (u)v := v A(u) + Ou(d,A(u)v + Oz A(w)D),  when k > 2;
PTA(u)v := (T A1 (u)v)(0,t) + (O (T Ay (w)v)(0, -),
k=% k—1—1
Bawi= S (*7 ) ot

1<I<k—2

By_1(u) == 0 *h + T(Ep_1(u)) — PiT (E_1(u)) (0, -).

Notice that Bj_;(u) does not depend on v and By_1(u) € C*!: Ep_ = 0 when k = 1,2.
Also A;(u) is a differential operator whose coefficients are in C*! when & > 1 and in C**0
when k& = 1. Fix ¢ in the interior of P and V € R?*2\ {0}. Consider ¢ = ¢+ AV € P

where A € R*. We first need to prove that M converges as A — 0. We claim that

’U('vtl)fv('rt)

5 is bounded for A in a neighborhood of 0. Let

14+«

I(#,t) = TA; (u(-,t)o(- ) — TA (u(-,£))v(-, 1)
Let us consider the case k = 1 first. In this case v = u. We decompose
1,8) = T { @l ¥) = Beul D) Al 1)) + Bl DAl 1) = A(ul- 1)) }
Using A(u(-,#)) — A(u(-,t)) = [" o L{A(su(-,t') + (1 — s)u(-, 1))} ds, we obtain
(A ) = Al )la < ClAlalul ) =l D)l

Thus
(3.13) AT )], < Alga ATl ) = ul 1))

‘1+a’
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for some positive constant c. Here, we have used the fact that |u(-,t)|114 is bounded in ¢,

due to u € C'**Y. From the definition of P,T A;(u)v, we obtain from (3.13)
NPT A (wul-, 1) = AT Ay (wu(-, 0}, < ¢ MUY,

We also have [A\"'{B1(-, ') — Bi(-,t)}|,,, < C|hla4a. Since | A1, can be chosen arbitrarily

w is bounded for A in a neighborhood of 0. Thus,

small, it follows that

1+a
there exist a sequence A\, — 0 and a map w(-,t) of class C'*® such that |w(-, )11 is
uniformly bounded and such that for ¢, :=t+ A\, V, we have |—(t) w(-,t)|pe — 0,
| 26Ct) 0D _ (-, 1) oo — 0 and | % t;:“ — 9w (-, 1)] = — 0 (see T.1e. in [16]).

Since T': L>(D) — L>(D) is bounded, it follows that w(-,t) satisfies the following equation
(3.14) w = (I — P)T{9:wA(u) + 0:u(0,A(u)w + Oz A(u)w) } + 8;h.
Now, if w'(+,t) € C*™* is another solution of (3.14) then
’w(" t) - w/(" zf)leroz < C‘A’Haﬂuﬁ,o + ‘u’1+a,0)’w('? t) - w/('a t)|1+a'

Recall that |u|1441 < 1. Thus w = w'. Therefore the solution w is unique, which proves
that M converges to w(-,t) = dwu(-,t) in |.];. Next, we want to show that the
map ¢ — w(-,t) is continuous from P into C!. Let ¢, be a sequence in P converging to
t. Since w(-,t,) is a sequence of bounded maps in C'**(D), it admits a subsequence, still
denoted by w(-,t,) that converges in |.|¢1 to a map w € C1*e. Tt follows that @ satisfies the
equation (3.14) in which w is replaced by w. By the uniqueness of the solution of (3.14),
we obtain w(-,t) = w and thus |w(-,t,) —w(-, )]y — 0 as |t, — t| — 0. This proves that
w = du € C1HO(D, P).

Consider now the case k > 2, which produces some extra terms. The above arguments
can be repeated easily. Now Of 'u is different from u. Set w; = Jrud,A(u),wy =
OcudzA(u). We decompose I(t',t) in the following way

1(¢,6) = T{ @0( 7) = 3ol D) Au(-,#)) + ol D(Aful-, 1) — Alu(-, 1)) }
+ { (wn () = wi ()0, #) + (-, #) = o D)wn (1) |
+ T{ (a1 #) = wal )T 1) + (-, #) =T, a1 .
Since k > 2, we have |w;(-,t)|o < ClA|21a|t|1+a,0. Recall that |ulas1a1 < 1. We can get

[wi(, 1) = wi(, )|a < ClAl2galu(, ) —ul- t)11a < ClAl2ral Mul2rar-
We obtain

(3.15) AT, < COlAlaga M) =0 0)],,, + Clulaian
Again, from the definition of P,T'A;(u)v, we obtain from (3 15)
INHAT A (w)o(, 1) = PITA (wo(- 1)}, < ¢ AHE )|, -

We also have |\~ {By_y(-,#) — Bk_1<-,t>}|1+a < Ol + [Wlsan ) Since |Alra
can be chosen arbitrarily small, it follows that as before there exist a sequence A\, — 0
and a map w(-,t) of class C™* such that |w(-,)|;1 is uniformly bounded and such that
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for t, := t + A\, V, the sequence M — w(-,t), together its first order derivatives,
converges to zero as A\, — 0. Also

w=I-P)T {&_wA(u) + 0cv0; A(u) + 0y (Ocudy, A(u))v + 8<u8uA(u)w}
+ (1 = POT{ 0Bt A(u))T + Deu( D A(w))T | + 0By (u).
This equation is similar to (3.14) as |A(u)|, < C|A|, and

10cu0, A(u)|a < ClulitaolAlitalul] < ClA|14q

can be chosen arbitrary small. By repeating the rest of arguments from the case k = 1, we
can verify that ofu € C'**0(D, P).
Step 3. Regularity of v in C**1*®* for finite k or in C>7.

Recall by Step 2 that we need to show that u € C*t**~! when j = k is finite. We
have also proved that u € C/"+1+e (D, P)NC**(D, P). We will only able to improve the
regularity in interior of . To achieve Step 3 and to demonstrate the differences between
Steps 1 and 2, we will show a stronger result. Assume that the almost complex structure
is of class Ck*® with k > j (this includes the case j = k which is treated in Step 2 for
finite k). Assume that for all I < j, dlu is continuous on D x P and that distributional
derivatives 9:0lu(-,t) have bounded LP(D) norms on P for p > 2. Moreover, suppose that
u(+,t) is J-holomorphic on D. Then u € C*1+54(D,, P) for r < 1 and 8 = min(a, 1 —2/p).
The proof is achieved by induction on the order of the derivative in the (-variable.

According to (3.9), the first-order derivatives of dlu(-,t) have bounded LP(D) norms
on P. By Morrey’s inequalities, u € éﬁ’j(Dr,P) for any r < 1 (see Lemma 7.16 and
Theorem 7.17 in [8], pp. 162-163). Fix (, € D and set Ay := A(u((o,t)), u = @ + @Ay and
us (¢, t) := (e, t) with ¢ = Co + p¢. Here 0 < po < 2(1 — |¢|) will be determined later.
According to (3.9), we get on D

(3.16) Osue = Oeu, A(C, 1),  A(0,1) =0,
(3.17) AdC1) = [Auo+ HC. 1) — Agl[T-ApA] .

We emphasize that A,((,t) is considered as a matrix functions in ¢ and ¢, but not in w,.
Let x be a smooth real function with compact support in /4. Let v := yu,. Multiply
(3.16) by x and rewrite it as

(3.18) dzv — @A*((, t) = OzXUs — OcxusAL(C, ).

Let x be a smooth real function with compact support in I such that x = 1 on Dy, and
IX|1 < 5. Replacing A, by YA., we may assume that A,(-,t) has compact support in D.
Using (3.17), we get for (,(’ € D,

[AL(C O] < ClA(u( 1) |an”,
[A(C ) = A, )] < ClA(u(- 1)1 |¢" = ¢

Therefore
A0 < ClAoulgop” < ep.
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Here €p is the constant in Lemma 2.2 and p is sufficiently small. Apply 7' = Tp to (3.18).
Since v has compact support we have

(3.19) v —T(9vA,) = T(Ozxus — OcxusAy) =: w.

The transpose of the solution v is equal to (I —TALd;)~'w’. Since wu, is in C*/ (D, P), then
A, and w are in C'*4(D, P). By Lemma 2.2, v is in C'*#4 (D), P). Hence u € C'*#4(D,, P)
for any 0 < r < 1. Assume that we have achieved u € Cl+Bk (D,, P) for any 0 < r < 1 and
[ < k+4+1—7. Since A, has compact support in D, then A, € él+ﬁ’k(ﬁ, P). By |Ailao < €as
(3.19) and Lemma 2.2, we get v € C*1484(D, P). This shows that u € Ck+1+84(D,, P) for
any r < 1.

Step 4. Construction of R.
We assume that Q7 and M are subsets defined by y, > 0 and y,, = 0, respectively. Let

e(t,0) = (a,t' +1ib"). Since e(t,0) - 05 is not tangent to M, then V' + ib” # 0. Recall that
u = W(u). By (3.10), D(t) N M is defined by

(3:20)  V'E+ U =F(n.t), F(&nt)=Im{PP(u(€+in,t)) — D(u(§ +1in, 1))}
Without loss of generality, we may assume that ¥ > |V’|. We already know that F €
CHrited(D,, P). We may also achieve |0,F| < V//2 by assuming |Al;1o < 1/C,. By the
implicit function theorem, (3.20) has a solution n = h(,t) for |{| < r/c and t € P. Now

(eh, 0uh) = (V) — O, F (€., 1)) (0 F — V', O, F)
implies that oih € CF1 e~ for all [ < j. On D,/ x P, define

R(C 1) = u(€ +i(n + h(& 1)), 1).
It follows that R(-,t) sends Dj/c into DT (¢). Replace R((,t) by R((/c,t). The remaining
assertions can be verified easily. O

We point out that Proposition 3.7 fails if the almost complex structure is merely Holderian.
Indeed, in Ivashkovich-Pinchuk-Rosay [13], an almost complex structure of class C/? is
defined on @ = Dy x D590 C R?* together with a family of pseudoholomorphic discs
u(.,t) : D — Q of class C'*1/2 such that u(¢,0) = (2¢,0), and such that for ¢t # 0,
u(0,t) = (0,¢) and |0,u(0,t)| < A for some A < 2. In particular, the map ¢t — u(.,t) € C*
is not continuous at 0, and so u ¢ C1*+1/20.

It is well-known that via the Fourier transform, the boundedness of derivatives of a
function on all lines parallel to coordinates axes yields some smoothness of the function
in all variables (see Rudin [20], p. 203). To limit the loss of derivatives, we will use the
Fourier transform only on curves. This requires us to bound derivatives of a function on a
larger family of curves.

Let v be a curve of class C* in R” and let f be a function of class C* on R". We have

(3.21) (1) = (V) - D)+ D Qur(d 1)@ (1)),

1<|I<k
where () ; are polynomials, 9% denotes derivatives of order < k, and

V-0 =010y + -+ 0,0,
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For the convenience of the reader, we prove the following elementary result.

Lemma 3.8. Let k be a positive integer and let € > 0.
(1) There exist N vectors vy = (1,v;) € R" such that |[v}] < e and

(322) 8I = C[71(U1 . E))k + 4 C[’N(UN . 6)’“, |I| = k.
(13) If vy,...,vN satisfy (3.22), there exists 6 > 0 such that if |[u — v| < §, then
(323) 8I :QLl(U)(Ul -3)k+---+Q17N(u)(uN-8)k, |I| =k.

Here Qp; are rational functions with Q j(v) = ¢; ;. Moreover N depends only on k,n.

Proof. (i). Equivalently, we need to verify (3.22)-(3.23) when 0 is replaced by & € R".
It holds for n = 1. Assume that it holds when n is replaced by n — 1. For &F, we
take distinct non-zero constants Aj,...,\,. Then &* is in the linear span of &F, (£ +
MEDE (& + MEn)E Let EP(&h, ..., &-1) be a monomial of degree k > j. Then by
induction assumption
EP(E, . bnr) = Gler(vr- O+ v - ),

where v; = (1,@3’, 0) with [v]| < €/2. Then &, (v, - £)¥=% are in the linear span of (v; - £)*,
(v - €+ ME)F ., (- €+ M&)R. Note that A;’s can be arbitrarily small. Thus, (i) is
verified.

(7). For |I| = k we have the following expansions

¢ = Z cry(v-©)F, &= Z crj(uj - €)F + ZQII"U_U

1<j<N 1<j<N |I'|=k

Clearly, QVI, (0) = 0. Moving the last sum to the left-hand side and inverting I—QVM/
yields (3.23). O

It is elementary that the smoothness of a function on all lines does not yield the smooth-
ness of the function. However, if the norms of derivatives on lines are uniformly bounded,
we can achieve the smoothness of the function. For the proof of Theorem 1.1, we need
to use derivatives of functions on families of curves. This is the content of the following
proposition (see [23] for a similar statement). Set t' = (ta,- - ,t,) and t = ({1, ).

Proposition 3.9. Let k, N be positive integers. For j =1,...,N, let R; be C' diffeomor-
phisms from Q; C R™ onto an open subset Q@ C R™. Assume that R;(-,t') € C* and that
R;(0) = 0. Suppose that at 0 € {2

(3.24) 0" = Y crj(0,R;(0)- )1, 1< |1 <k
1<G<N

Let f € C°(Q). Then the following hold:
(i) Let f be of class C* near 0 € Q. Then for x = R;(t’) near 0

(325 of@) =S 3 Qm(a(m DR (1 ),...,8§?_Z+I)RN(tN))8i{ FIR;(#7)),

1<I<Km 1<j<N
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where Qp,.; are rational functions without pole at (a‘m "D R(0), . .. ,35?4“)}3]\/(0)),
and 1 < m = |I| < k. Moreover (3.25) holds on a domain w if f € C*(w) and
0 € Ow C B? where € is sufficiently small.

(i7) Suppose that R; are affine, i.e. R;(t)—R;(y) = R;(t—y) wherever they are defined.
Suppose that the L7° norms of one-dimensional distributions O (f o R;)(-,t") are
bounded int' for allm < k. Then near 0, &' f are Lipschitz functions for all |I| < k.

(i4i) Let R; be of class CF*' near 0 € R™ and let n < p < co. Suppose that the LY
norms of one-dimensional distributions O (f o R;)(-,t') are bounded in t' for all

m < k. Then near 0, f is of class k=

Proof. (i) follows from (3.21) and (3.23), by hypothesis (3.24).

(7). Applying dilation and replacing f by xf, we may assume that f has compact
support in A", Set Xe( ) i=¢€ ”X(e L) for a smooth function x with support in A" and
[ xdx =1. Set fo(z) := [ f(y)xe(z —y)dy and f; := f. o R;. Changing variables via R;,
we get

fos(t) / f(R (1)xe(Ry(w)) det R, () dy.

Using R;(t) — R;(y) = R;(t — y), we get \fE]( )|, < C for C independent of € and . In
(3.25), we substitute f. for f. Therefore, ! f. are bounded near 0 . We can find a sequence
fe; such that as €; tends to 0, o' fe; converges uniformly for [I| < k, and the Lipschitz norms
of of fe, are bounded. Since f. converges uniformly to f as e — 07 then OFLf € Lipioe.

(7). For such a function f, we define a distribution T f by

T,1(6) = (<1 | o Ry(2%0(R, (1))

where ¢ is a test function supported in A with e small. It is clear that defined near 0,
T; f is a distribution of order (<) k. Integratmg by parts in the t;-variable yields

TN <C [ 1081 Rl 160 R )l

n—

<[ 60 Bty df < Calloo Byl < Gl

Here the first and the second last inequalities are obtained from the Holder inequality and
from supp ¢ C A?. Hence near 0, T;f € L? for p > 1. Next we find a differential operator
P; 1:(0) of order k such that P;;(0)f = T1;f. In order to find it, we use a smooth function
g to obtain

/ 0k [g o Ry(DI6(R, (1)) dt = / (6B,(0)g) o R;(t) dt
/ det((R7Y) By (0)g)6 d = (Py1(D)9)(6).

Since R; € C*1, it is easy to see that

Pj,k(a) = det((Rj_l)/)Pj,k<a) = Z aj,k,lal, j k1 € cll.

1<k
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The last assertion implies that P;;(0) has order k. The definition of T} f and the identity
P;(0)g = T;g imply that as distributions defined near 0, we have P;;(0)f =1} f.
Note that
S as(@0! = 37 Crdet (R (2)) (@ B ()10, Cr #0.

=k =k

Here #/ = R (). Combining with (3.24), we get for g € C* and 1 < |I| < F,

]
d'g = Z Z brjiP;1(0)g, brj, €C.
1<I<m 1<j<N
The last assertion, combined with ord P;;(9) < I, a;r € CYl and P;;(9)f € LP, implies
that near 0, 9! f are in LP for 1 < |I| < k. Therefore, f € WEP and f e ck by a Sobolev

loc

embedding theorem (see [11], p. 123). O

4. CAUCHY-GREEN OPERATOR ON DOMAINS WITH PARAMETER

The following result is certainly classical; see [24], Section 8.1 (pp. 56-61). For the
convenience of the reader, we present details for a parameter version. Recall that P is the
closure of a bounded open set in a Euclidean space and that two points a, b in the interior
of P can be connected by a smooth curve in the interior of length at most C'|b — a.

Lemma 4.1. Let 7 be a complez-valued function on D" x P of class C"“+1+°"O(ﬁ+,P).
Suppose that for z,2 € DT and t € P,

(4.1) |7(2',t) — (2, t)| > |2' — z|/C.
(1) Let f be a continuous function on [—1,1] x P. For z € DF, define

Cof(z,t):—i/_1 ft) g

C2mi J_y T(s,t) — 7(2,1)
Then [0%Cof(2,t)| < Ckl|f|r~/| Im z[**1 where Cy, depends only on |7|1.0-

(i) Let f be a function of class Ckt*0([—1,1], P). Then Cof extends continuously to
(DT U (—1,1)) x P. Moreover, Cyf € CHQ’O(E:,P) for any r < 1 and satisfies
1Coflitan < Clflktao-

(i1i) Let f be a function of class Ck+a70(ﬁ+, P). For z € DT, define

1 f(¢t)
Sof(z,t) .= ——lim
of(#1) T 0 Jteens: |r(ct)—r(zt)>e) (T(C 1) = T(2,1))?

1 f(¢t)
T t) i =—— dé&dn.
St = /D GO R
Then Sy f € CHO"O(E:, P) and Tyf € CHHQ’O(E:F, P) for anyr < 1 with |So f|k+a,0+
To f 41400 < C|fe+a0-

Proof. (i). Note that (4.1) implies that |7(z,t) — 7(s,t)] > Imz/C for —1 < s < 1 and
z € D*. The proof is straightforward by taking derivatives in z,Z directly onto the kernel.

d€dn,
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(i7). Let z = = +iy. Let x be a smooth function with compact support in (—1,1).
Replacing f(x,t) with x(z)f(x,t)/0,7(z,t), it suffices to get the norm estimate on D x P
for

(4.2) Cof (1) = 5 /BD+ T(C’f)(f’ ?(z’t) ar (¢, 1)
. L f<C7t) — f(ZL'

Y t)

C2mi Jops T(C 1) — T(2,1) dr(C,t) + ef(x,t).
Here the differentiation and integration are in ¢, and € = 1 if 7(+, t) preserves the orientation
of DT; otherwise ¢ = —1. From (4.1) and 7 € C}°(D*, P), we know that ¢ is independent
of t. Let Cif denote the second integral in (4.2). Let & denote a j-th derivative in z,y.
In what follows, the norms | - |j+a,0 for f,7 are on D*, and norms | - |j1a,0 for Cyf are on
D;" with r < 1. These norms will be denoted by the same notation |- |;+,. Since ¢ is fixed,
we suppress it in all expressions. All constants are independent of t.

That Cy f extends continuously to D" x P follows from the continuity of f and
f(s) = f(z)
7(s) — 7(2)
Take (4.2) as the definition of Cj. Differentiating it gives

(4.3) a0 f(z) = 71 /8 B %dr(o.

< C|flalz = s|*™.

Using [7(s) = 7(2)| = (Js = o] + ly)/C. we get
Clflaols — x|@
o)l <y [ Slalt=t

a

p+ yl* +[s — af?
By a Hardy-Littlewood type lemma, we obtain |Cf|a0 < C|f|ao0. For higher derivatives of
Cof, we differentiate (4.2) in the z-variable and transport derivatives to f via integration
by parts. We get for |I| = k

(4.4) oCof(z)= Y 9Nir(z)- - aKlT(Z)/ f1x(C)

|K|=|1| ap+ T(C) — 7(2)
Here fix(s) are polynomials in (9,7(s))~%, 9L f(s), 0 7(s) with [ < k. As before, we have
the continuity of

1 f1x(C) 1 frx(C) — frr ()
o | S ) =
2mi Jop+ 7(C) — 7(2) 2mi Jop+ 7(C) = 7(2)
By differentiating the integral in (4.4) one more time, we get a formula analogous to (4.3).
As in case k = 0, we can verify that the C* norms of 9*Cyf(-,t) on ﬁ: are bounded.

(71). We first show that Sof € Ca’o(ﬁ+, P). Let —2id& N dn = A(C,t) dr (¢, t) AdT(C,t).

Let x be a smooth function with compact support in DY, U (—/,7'), where 0 < r < 1’ <
1. By replacing f((,t) by x(Q)f(¢,t)A((,t), we may reduce to the case where f(-,t) is

supported in E:r, with » < " < 1. We may also replace the domain of integration by

ds < Co| flaly* ™.

dr(Q).

dr(¢) + efrr ().
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a smooth domain D with Df ¢ D C ﬁ:. Again, we suppress the parameter ¢ in all
expressions and write

L/ (f(Q) = f(z) dr(Q) AdT(¢) _ f(Z)/ dr(0)
2mi Jp (7(¢) = 7(2))? 2mi Jop T(C) = 7(2)

On 0D, write d7(¢) = ao(¢) d7(¢). By (ii), we know that the last integral in (4.5) is in

Ca’o(ﬁ:r , P). Denote the first integral in (4.5) by g(z)/(27i). That § extends continuously
follows from the continuity of f and |f({) — f(2)|/|7(¢) — 7(2)|* < C|¢ — 2z|*~2. Write

(4.5) Sof(z) =

[ () = J(=) dr(Q) AT
9(z) — (=) Amao—ﬂ@xﬂo—ﬂm>

(F(0) = f(z2))(r(z2) — 7(=2)) __

‘ﬁ@(ﬂo—r@gvv@»—wa»dﬂoAdﬂ)

() = Fe)(r(z2) — 7(=2)) __

O P ) O A

The last two integrals can be estimated by a standard argument for Holder estimates,
bounded in absolute value by C,|| f|la.0/22 — z1|*. The first integral can be rewritten as the
product of f(z1) — f(22) and Z where

o dr(Q) AdT(Q)  dr(Q) A dr()
IfTwwwuaé{d> () (0 - d)}
() — (=) | QdrQ) 70

* /{o C

= ) —7(z2) T (@) = 7(@) Jop \ T — 7(z) 7

o) |
) = 7(z1)
A derivative of [, T(O dT(( is 0.7(2) [5p % which, by (i7), is bounded. By the mean-

value-theorem, the last term in Z is bounded. This shows that Sy f € C“’O(ﬁ:, P).

For higher order derivatives, we transport derivatives to f. Define f.(7(2)) := f(2)
and w(t) := 7(-,1)(D). Let C, := Coup), Tv = Tow) and S, := Syu). Rewrite (4.5) as
g«(7) = €S, f.. By integrating by parts, we obtain

L Ofs) 1 fi(<)
g«(7) = ,/( ds N\ dS — 27”/w() ds.

2m Jyy ST NS —T

On dw(t), we write dT = a(r,t) dr with a € C***%(9D, P). Taking derivatives, we get
&TS*]C* - a’rf*a aTS*f* - S*an* - aTC*af*-

Using the last formula £ times, we get

(0)FSuf. = S.08f. = Y 05 Cladlf..

0<j<k
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We return to the z-variable. Let a(z,t) := a(7(2,t),t). Let OX be a derivative in 2,% of
order |K| = k. Let OU) denote derivatives of orders < j. Then

(4.6) K Sof(z) =p" (0P7) - (OW S, f., 0P f,) o 7
= 3 R O0W7) - (5.0 1., 05D CL(adY) 1), 09 1.) o 7

0<j<k

= 3 g (Soato 1, 0 Cofagol 1), o).

0<j<k
Here the integral operator Sy is over the domain D, and Cj is over 9D. p§~ are vectors of

polynomials, and qjl-vk, qz, q? are matrices of polynomials in (det7/)~! and OV 7. Tt follows

from the assertion for £ = 0 and (i7) that Spf € Ck+°"0(ﬁ+, P).
Note that 0,7, = S, and 0T, = 1. Thus it follows from (7i), the product rule, and the

chain rule as used in (4.6), that T f € C*H1+*0(D" P). O

5. PROOF OF THE MAIN THEOREM

Let A := [-1,1] and A, := [—7r,r]. Let A" A?"~1 A2" be the corresponding cubes in
the z-subspace, hyperplane ¥, = 0, and R*", respectively.
In this section, we state and prove a more precise version of Theorem 1.1.

Theorem 5.1. Let kK > 3 be an integer. Let 2,99, M, be as in Theorem 1.1 with
M e CkHre Forl=1,2, let J' be an almost complex structure of class C***(Q, U M) on
U M. Suppose that at each point p € M there is a tangent vector v, € T,M such that
Jyvp, Jov, are in the same connected component of T,R** \ T,M. Let f be a continuous
function on QUM Uy such that (0, +Z'Jl8mj)f and (0y, +2'Jl8yj)f, defined on Q, extend
to functions in C*(QQUM) forl=1,2 and1 < j < n. Then f € C*2(QUM)NCF2+5(Q)
for any B < 1.

Notice that no integrability condition is assumed. A by-product of our proof is an interior
regularity of f with f € C#(;) for any 8 < 1 when k = 2; of course, the assumptions
on f,J% M and Q, are not needed in order to obtain the regularity of f on Q;. The
result might not be sharp. Indeed, when the structures are integrable and £ > 1, the
Newlander-Nirenberg theorem [25] yields f € C¥*#(Q,) for any 8 < 1.

We first describe the main ingredients of the proof.

Step 1. Let Qt = Q; and Q= = Q,. We first assume the interior regularity that f is
C' on QT U Q™. We will show that the Fourier transforms of f on lines L in M decay
in the &-variable. To use the differential equations for f, lines L need to be transversal
to the complex tangent vectors of M of both structures. Two almost complex structures
yield decay of the Fourier transform at opposite rays. This is the only place we need both
structures. According to Proposition 3.9, this gives the smoothness of f on M.

Step 2. In order to obtain the smoothness of f on each side of M (up to the boundary)
via the one-sided almost complex structure, we attach a family of pseudoholomorphic discs
to M by using Proposition 3.7. Such a disc will have regularity as good as the structure
provides. This is achieved by extending the structure to a neighborhood of M. Using
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Lemma 4.1, we prove that the regularity of f on M yields uniform bounds of pointwise
derivatives of f along the discs up to their boundaries in M.

Step 3. After obtaining the smoothness of f on families of discs in QT U M, we ob-
tain the interior regularity of f, including the C' regularity, by Proposition 3.9. Using
Proposition 3.9 again, we conclude the smoothness of f on QU M.

We now carry out details. We need a preparation for Step 1.
Step 0. Match approximate J-holomorphic half-discs in M.

We fix a finite integer k > 3. We may assume that M = A? 1 x 0, QT =D"N {y, > 0}
and Q- = D"N{y, < 0}. By assumption, there is a vector vy € Ty M such that the vectors
Jivo, JEvy are transversal to ToM and are in Q. Thus the line segments tJjvg, tJ3vg
(0 < t < 1) are transversal to M and are contained in QF, by shrinking vy if necessary.
Here we have identified R?*" with T,R?" by sending v to the tangent vector of p + tv;
consequently, J! acts on R*" linearly.

Let € > 0 be sufficiently small such that if p € M and v € T,M satisfy |p| < € and
lv —wo| < €. Then Jjv and Jv are still in the same component of T,R** \ T,M. By
transversality, p + t.Jjv and p + t.J2v are in Q% for 0 <t < 1. Define the line segment

L=1L(v,p):={p+tv: —2<t<2} CM.

Let ey, ..., ea,—1 be the standard basis of R**~!. We find an affine coordinate map ¢ on
R?" such that ¢(p) = 0, ¢(p +v) = ey, and ¢(p + v;) = e;. We may also assume that
the norms of ¢ and ¢~! have an upper bound independent of p and v. In what follows, all
constants are independent of p and v. Proposition 3.9 (iz) will be used for this family of ¢
(with p = 0) depending on parameter v with vy to be chosen.

We want to apply Lemma 3.6 to L(v,p). Here v and p are considered as parameters
and we suppress them in all expressions. For the above L(p, v), we attach an approximate
J-holomorphic curve u' of class C*+1*® such that

(5.1) du'(9z) = V' (2) - X' (! (2)) + F'(2) - X1 (ul(2)),
[Fi(2)] < Clyl*™®, (2,y) € Q= (=1,1) x (0,¢).
We have an analogous u? and Q= U M. We also require
u'(z,0) = p+ xv = u?*(z,0) on [—1,1].

We know that u!(z,0) is contained in M c Q' NQ for |z| < 1. When p =0 and v = vy,
we have du'(0)(9,) = vy and du'(0)(9,) = Jydu'(0)(9,) = Jyvo is contained in QF, —Jiv,

is contained in 2~ and both are transversal to M. Thus,

(5.2) ut(z,y) € QT (2,9) € Q; wi(x,y) €Q, (1,y) € Q.

The above hold for v = vg and p = 0. Since the derivatives of u are continuous in p and v,
the above hold for |p| < € and |v —v'| < e. And for a constant C' > 1 independent of p and
v, we have

(5-3) dist(u'(z,), M) > yl/C, (2,y) € (-1)7'Q.



TWO-SIDED COMPLEX STRUCTURES 26

Step 1. Uniform bound of Fourier transform of f on transversal lines L in M.
In Steps 1 and 2, we will assume that f is C! on QT U Q™. We will verify this interior
regularity in the final step.
Fix k. Recall from Step 0 that M is contained in R?*~!. Let vy, € be as in Step 0. By
Lemma 3.8, there exist N vectors v; in R*"~! such that

(5.4) Oy 0p)' = > erlvy- (0,0, 1< <k

1<j<N
Here |v; — vg| < €. Recall that the line segment L is {p +tv;: —1 <t <1} withp e M
such that |p| < e. Fix such a segment L and denote its tangent vector v; by v.

Note that when e is sufficiently small, L has length > |v|/2. Let xo be a cutoff function
on M with compact support in Aﬁﬁﬂ J(an) 1) M. Then xq|, has compact support. We will
show that the Fourier transform of xqf on L satisfies

(5.5) (14 I+ [xof12(8)] < Cs

for any 8 > 0, where Cs will be independent of p, vy,...,v4. We will verify (5.5) for
£ = —|¢Jv, using X f = g} on QF with gj € C*(QT U M). For £ = [£[v, we use X7 f = g7
on Q~ with g7 € C*(Q~ U M).

We now use approximate J-holomorphic curves u', u? defined in Step 0. We drop the
superscript in u', g7, aj,, etc. Applying Lemma 2.3, we extend xo o u(z,0) to x € C>(Q)
which has compact support in each (—1,1) x {y}. Moreover, |d-x(z,y)| < Cly|/***. For
brevity, denote f ow and g; ou by f and g;. Combining with (5.1), we get on Q)

Oyx(x,y) = i0:x(z,y) + E(2,y).

Moreover (|E|+ |F|)(x,y) < Cly/***, and V, E, F are in C*¥+*(Q), and g is in C*(Q).
In what follows, as required by (5.5) constants do not depend on L, p,v;. By (5.2),
u(z,y) is in QF for |z] < 1,0 < y < e. Define for y >0

A&, y) = /R (Xf) (@, y)e T8 dy.

Notice that .
T2(E) = ME0) = AEsn) — / ONE, ) dy.
By (5.6), we obtain
ONE ) = / 0, 0cf) &, ) 9] d
R

=2 [ (gl -V le e =+ [ () B e da

Y /R VP (2,y) - () (ulz, y)e 0% g,
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By integrating by parts, the first integral is zero. Since g(u(z,y)),V(z,y) € C* and y& <0,
the second one, via integrating by parts k times, is bounded by C(1 + |£])7*. The third
one is bounded by C|E(z,y))| < Cy*te.

We now estimate the last integral. This amounts to controlling the blow-up of derivatives
of f at u(x,y), for which we apply Proposition 3.7 to a domain of fixed size. By (5.3), QF
contains D} (u(z,y)). Let 0 = (w) := u(z,y) + yw/C with w € C". So ¢! transforms

J, X; into j, Xl = Clydyp=1X;. On D", we have

Xl = Z (bls o w% “+ a5 0 1/}81;,8)
1<s<n

Let A" := (s o) and B’ =: (b5 o ¢). It is easy to see that on D", inf ‘% %: > 1/C and
|(A", B")|g+a < C for some constant independent of v and p. Fix 1 < m < 2n and let
(1, ..., ay,) be the standard coordinates of R*. Applying Proposition 3.7 to {X;}, we
get a J-holomorphic curve @: D, — D" satisfying @(0) = 0 and d@(0)(0;) = O, — o0y, -
Here r > 0 is a constant independent of y, and |#’4| < C for j < k + 1. Then the disc
a(¢) :== ¢ o u(C¢/y) is J-holomorphic. We have a: D,/ — Qf := ¢(Q7), a(0) = u(z,y),
and

du(0)(9) = Ouy,, = 1Ja(0) Oy, -

So dii(0)(0z) = Oy, + iJa()Our,- A direct computation shows that the first and second
order derivatives of @ are bounded by C' and C'/y, respectively. It follows that du(95) =

V(¢) - X ((¢)) and the first-order derivative of V(£,7) is bounded by C/n. Let g; := X, f.
We obtain

Oe(f(u(¢))) = g(a(C)) - V(C).
By the Cauchy-Green identity, we have

e f@(6) -1 9(a(¢.)) - V(¢.)
f(a() o T

270 Jici=yre =€ i
At ¢ = 0, the first-order derivatives of the first integral are bounded by C/y. Write
g(@(¢)) - V(¢) as hy(¢) + hy(¢). Here C' norms of hy, hy are bounded by C/y, hy(¢) = 0
on [¢| < y/(4c), and ho(¢) = 0 on |¢| > y/(2¢). The first-order derivatives of the integral
involving h; are bounded by C' at ¢ = 0. After applying a translation (' = (, — (, the
integral involving hg has bounded derivatives at z = 0 too. We obtain

2|(Ouy,, [)(@(0))] = 10:(f(@))(0) + 8-(f(@))(0)] < C/y.

d&..dn,.

Thus,
DAE ) < C (Y + (1 +1E)7).
We also have for n& <0
A& m)| < Ce™ < Culng] "
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We may assume that ¢ < —1. For 0 < o/ < «, choose n = 1/(C|£|'¢) with € > 0
sufficiently small. Finally, A\(£,0) = A(§,n) — fon OyA(€,y) dy satisfies
1

(5.7) A&, 0)] < CLCTHE[) ™ + Clel—=

e 1 —k
S o)

< Cor (L4 [y~
for £ < 0. Reasoning with X7 f = g2 for y, < 0 and u?, we get (5.7) for £ > 0 and hence

for —oo < € < 0.
By the Fourier inversion formula,

o) = o [ e e i,

659 O O+ a) = 5 [ NE0)(ie)* e e

Using (5.7), we obtain xf(p + av) € C*7 L. Let 0 < o” < o’ < a. Note that [e®*? — e¥1| <
2|zy — 1|*" for all real numbers x1, 5. By (5.7) and (5.8) again, we obtain

8k71 i ak‘fl < Co// |ZE2 - x1|o¢ |€|a
| x (Xf)(p + xQU) x (Xf)(p + $1U)| = R (1 + |§|>1+o/
We have |(xf(p + -v))|k—1+a7 < Car. Therefore,

|Xof‘L‘k,1+a// < Cau7

where L is any line which is tangent to one of vy, ..., vy and which passes through p € M
near the origin. For such a line L, we can find an affine diffeomorphism R with R(0) =
0 € M, sending A*~! into M, such that R(-,t) are lines parallel to L for t € D""!. By
Proposition 3.9 (ii) and hypothesis (5.4), we get 9" 2(xof) € Lip (M).
Step 2. Uniform bound of derivatives of f on transversal J-holomorphic curves.
By Lemma 3.8, there exist N vectors v; € R*" with |v;] < 1 such that
|

(5.9) 0,0, = 3" ery(v;- 0.0))", 1< <k

1<j<N

de.

By perturbing v;, we may assume that J,(v; - (0;,0,)) are not tangent to M at p = 0 and
hence in a neighborhood of 0 in M.

We are given n vector fields X, - - - , X,, defined on QUM . Recall that M is contained in
Y, = 0 and Q7 is contained in y,, > 0. Applying Borel theorem (Lemma 2.3) via restriction
and then extension, we may assume that Xy,..., X, define an almost complex structure
on a neighborhood of M. We emphasize that even if we start with an integrable almost
complex structure, the resulting almost complex structure may not be integrable. We now
apply Proposition 3.7 with the parameter set P = ﬁj}o_l. We find diffeomorphisms u;, R;
of class CF1** which maps I, x D! into Q and such that

(5.10) du;(0,1)(0¢) = v; - (0, 0y).
Moreover, D, (t) == u;(D,,t) = R;j(w,,(t),t) satisty
Dy/e, Cwjr(t) C Deyy.
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Also R;(0) =0, u;(0) =0, and
—2idu;(-,t)(0g) = Jo(v; - (0, 8y)) —i(v; - (O, By))-
We choose r < 1y sufficiently small so that various compositions in u;, ?; are well-defined.

Also w},(t) = wj,(t) N {y > 0} satisfies R;(w],(t),t) = D (t) := D;,(t) N Q. Write

j?r

(D, (t),t) = u; ' (D}.(t)). According to the Cauchy-Green formula, we have
) 1 w(C,1) ~ 1 O=f(u;(C.t) =
f(uj(z,t)):_./~ Mdé——./ <~—~dC/\dC.
2me obt, ) C—Z 2me 0 (-2

Set (2,t) = u; ' o Ry(2,t) = (15(2,1),1). By du;(9;) = V(C) - X(u;(¢)) and X f = g;, we
get &Cf(uj) =V - g(u;) and

ef(Ri(zt :—./ 2 dr;(C,t
( J( )) 2mi Ceawzr(t) Tj(C7t) - Tj(z7t) J( )
1 (C. 1)) - (1)) ——
- — g<RJ(C7 )) V<TJ(<7 )) de(Cat)/\de(Cat)-
2mi w;r(t) TJ<C7 t) — Tj (Za t)
Here e = 1 if 75(-,t) is orientation-preserving and otherwise ¢ = —1. Notice that € is

independent of ¢. Recall that R;(-,t) sends [—r/c,7/c] into dDJ,.(t)NM. Since u € CFH1Hk,
it is easy to see that V(7;((,t)) are in Ck**9. Applying Lemma 4.1 (i), 8352(]‘(]%]-)) are
continuous on A, /., X [0,7/c,) X Df/_cl And on it, | f(R;)|k—2+p80 < Cp for any § < 1, where
]D):f/_ci is the parameter space.

Step 3. Smoothness of f via families of J-holomorphic curves.

In this step, we will first remove the assumption stated at the beginning of Step 1 that f
is C! on ;. We also address the comment made after Theorem 5.1 on the interior regularity
of f. Let J = J' € C¥ and Q) = ;. Here we again need k > 3.

Let v; satisfy (5.9). According to Proposition 3.7, we find a C*™*** diffeomorphism
u; defined in neighborhood of 0 € € such that ¢ — w;((,t) is J-holomorphic for fixed
t € D! and u;(0) = 0, du;(0)(J) = v;. Drop the subscript j in u;. Then u™' defines a C*
coordinate system in a neighborhood of the origin, and »~! transforms .J into J. Tt follows
that D, x {t} are J-holomorphic curves for |t| < € and € small enough. Thus we can take
X, = a(C, )0z + b(¢,t)0; with a,b € Cktek and ¢t being the parameter. Now f := fou
satisfies X, f = ¢, € C*. Here X, f = ¢y holds in the sense of distributions. We want to
show that when restricted to D, x {t}, X1f = g1 still holds as distributions. To verify it,
we fix a test function ¢ on D, and take a sequence of test functions ¢, in C"~! such that
Jon-1 & =1 and supp ¢, C {t} + ]D)?/_Vl. Note that the formal adjoint X; does not contain
derivatives in the t-variable and satisfies

| oo, = [ o) = [ e
n Cn Cn
Since all functions in the integrands are continuous, as v tends to oo we obtain

/C 31 D) = /C F0X5(0).



TWO-SIDED COMPLEX STRUCTURES 30

Thus we have proved that in the sense of distributions le = g, € C* C C*'*P for any
B < 1. The coefficients of X; are in C*+**. Reasoning as at the end of Step 2 by using
Lemma 4.1 (7) and (4ii), we obtain f ou; € C¥™#9 for any 8 < 1. (Note that this part of
Step 2 does not use the assumption that f € C'.) Now fou; € CF710 with k —1 > 1,
u; € C* and Proposition 3.9 (i77) implies that f € C*¥=2%# for all 8 < 1. In particular, we
get f € Clon Q, UQ, for k > 3, which is used in Steps 1 and 2.

We now finish the proof of the theorem. By the end of Step 2, we know that when
r is sufficiently small, 8?;2(f o R;(§ + in,t)) are continuous on D' N {n > 0}. Assume
that & > 2. We also know that the C* diffeomorphisms R;,u; satisfy u;(0) = R;(0) =
0 € M, Rj(wj.(t),t) = u;(Dy,t) and Rj(w;,(t) N {n > 0},t) = u;(D,,1?) NQ'. Thus
(8?’2(f o)) ou; ! are continuous on D7 N Q" Since du;(0,t)(0¢) = v; - (On, 0y), in view
of (5.9) we can apply Proposition 3.9 to the family of diffeomorphisms wu;(¢ + in,t) by
treating (n,t) as parameters. Since f € C*¥=2(Q), using Proposition 3.9 (i) we express 9 f
on QFNA2" via functions (9¢(f ou;)) ouj_1 for 1 < |I| < k—2. The latter are continuous on

Q" ND". We have proved that &' f(z) extends continuously to & N A2 for all |I| < k — 2
and k > 2. Therefore, f € C*2(QT U M) by M € C*2. The proof of Theorem 5.1 is
complete.

6. ONE-DIMENSIONAL RIEMANN MAPPING FOR STRUCTURES WITH PARAMETER

Throughout this section, (2 is a bounded open set in C. We start with the existence of
isothermal coordinates with parameter. Recall that a diffeomorphism ¢ is said to transform
a vector field X into X if locally dp(X) = puX. Denote by Cki(Q U ~, P) the set of
functions which are in Ck+e (K, P) for any compact subset K of ©Q U~ where v is an
embedded curve. Set C¥*®7(Q U, P) := No<j<;,C* QU v, P) for k > j. Recall that
C>I(Q, P) = Mp2,C* (82, P) and set C>>°(€2, P) := N32,C>7(Q, P).

Proposition 6.1. Let k,j be integers or oo such that j < k and let 0 < o < 1. Let Q be
a domain in C and P be an open set in an Euclidean space. Let a € ék+a’j(Q, P) (resp.
CrHei(Q, P)) satisfying |a|p~ < 1. If x € Q there exist a neighborhood U of x and a map
@ € CkH1+ed (U, P) (resp. CHH14i(U, P)) such that ¢(-,t) are diffeomorphisms which map
U onto their images and 0= + a(z,t)0, into Os.

Proof. Fix « = 0 € Q. Let p(2,t) = z —a(0,t)z. Then z — ¢(z,t) is invertible and
transforms 0z + a(z,t)0. into 0z + a(z,t)0, with a(0,t) = 0. The problem is local. By
dilation, we may assume that 2 contains D. Let y be a smooth function on ID which has
compact support and equals 1 on D; /5. Applying a dilation and replacing a by xa = b, we
achieve |b], 0 < €, on D for the ¢, in Lemma 2.2. Set f := —(I+7539.) 'Tb. On D, we have
feFrited and | flio < ColI+T00,)  11a.0/blao. With the dilation for &, |f|1o can be
arbitrarily small. Therefore z — 2z + f(z,t) are indeed diffeomorphisms. Since z + f(z,t)
is annihilated by 0z + ad., it transforms 0> + a(z,t)0, into 0. O

It is important that the above classical result (for the non-parameter case) allows one to
interpret &z f +ad. f = g when a is merely C*. Let w = ¢(2) be a local '™ diffeomorphism
such that dp(0s + ad,) = p(w)0gy. Then 0:f 4+ ad,f = g holds in the w-coordinates, if
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Ox(fop ) =gop(w)/p(w) holds in the sense of distributions. Recall that in the proof
of Theorem 1.1, there is a loss of derivatives. We now turn to a sharp version for planar
domains. In fact, we will prove a parameter version.

Theorem 6.2. Let k,j be integers or oo such that j < k and let 0 < o < 1. Let v be an
embedded curve in C of class C*1+ . Let Q,Qy be disjoint open subsets of C such that
both 01, 0€ contain v as a relatively open subset. Assume that a; € ék+a’j(Ql U~, P)
(resp. Ck+d(Q,Ury, P)) and satisfies |a;|p < 1 on (QU~)x P. Let f € C%(Q,UyUQy, P)
and by € C*3(Q Uy, P) (resp. C*+3(Q, Uy, P)) be such that

&Zf + Glazf = bl on Ql, l = 1,2
Then f € CKH1F@i(Q, U, P) (resp. CH1Hd(Q, U, P)).

Proof. As in the proof of Theorem 1.1 in Section 5, we may assume that v is the z-axis
and ; = D, Qs = D . In the following, all functions a;, b;, etc. are defined on € for
some r > 0 and we will take smaller values for r for a few times. Applying Lemma 2.3, we
first find a function ¢; € CF1+ed with ¢(-,¢) € C3(Q; Uv) such that ¢;(z,0,t) = = and
0=ty + ;0.0 = O(Jy|[*+). Then ¢; sends 95 + ;0. into (05 + @;0,). Replace f,a; by
fog¢; ! a; on Q. Therefore, we may assume that a;(z,t) = O(|y[***). Now, define a := o
on Q. It follows that a is of class CF+7(Q U~y U Qy, P). Set X := 9 + a(z,1)0..

Next, we find g; € C¥1+*J on O, such that
Xg —b = O(’Z/|k+a), g(z,0) = 0.

Replace f by f — g, on €. Therefore, we may assume that b(z,t) = O(|y|*+). Define
b:= b on Q. Then b is of class CFt*7(Q U~ U Qy, P).

By Proposition 6.1, there are diffeomorphisms (-, t) with ¢ € C¥1*+ei(D,, P), which
send X into pds with g € CHi(D,, P). Then 0:(f o ™!) = boy ™ /u. Let h =
Tp, (b o ¢p~1/pu) where r is sufficiently small. Then h € CFHtei  Now fo¢~' — h is
holomorphic away from (), continuous up to the C! curve ¢(v). Take a small disc D,,
independent of ¢ and centered at p € (-, %9)(y). By the Cauchy formula, we express f(-,t)
on D, via the Cauchy transform on 0D, when t is in a small neighborhood of t;. From
f € €% and the compactness of P, we conclude that f € C*1+®J(ID, 5, P). Recall that f

is replaced by f o ¢!, Therefore the original f is in C¥+1+®9(Q, Uy, P). O

Lemma 6.3. Let Q C C be a bounded domain with 02 € C'. Suppose that v € C'(2) and
b are continuous functions on €2. Then v satisfies

(6.1) v+Tb=0

if and only if it satisfies

(6.2) Osv+b=0,

(6.3) L I R

N 271 a0 C —Z
Here three identities are on 2. Moreover, (6.3) holds on € if and only if v is the boundary

value of a function that is holomorphic on C\ Q, continuous on C\ Q, and vanishing at
00.
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Proof. Applying 0- to (6.1) gives us (6.2). On Q, Cv = v — Tdv. Applying Td- to
(6.1) and using (6.1) again, we get v — T0;v = 0. Conversely, if v satisfies (6.2), then
v+ Tb = v —T0zv = Cv. The latter is zero by (6.3). Thus v satisfies (6.1).

It is a standard fact that when € is a bounded domain with C' boundary and v is
continuous on 0f, then Cv(z — tn(z)) — Cv(z + tn(z)) converges to v(z) uniformly on 052
as t — 07. Here n is the unit outer normal vector of 9Q. Then (6.3) implies that Cv is
continuous on C \ © and agrees with v on 9Q. That Cv vanishes at oo is trivial. The
converse follows from the Cauchy formula. O

Now, we prove a version of Theorem 1.2 with parameter.

Theorem 6.4. Let k,j be integers or oo and let 0 < o < 1. Let Q be a bounded domain
in C with 90 € C*1*e. Let a € C*i(Q, P),b € CH1T*i(Q, P) be (scalar) functions
satisfying ||alla,0 < €a. Then

(6.4) v(-,t) + Tala(-, t)0.v(-,t)) = b(-, t)

has a unique solution v(.,t) with v € Ck+ot1i(Q, P). Consequently,
[+Tad,: CFH1+ed"(Q, P) — CF+i+ed'(Q, P)

has a bounded inverse if k' < k.7 < j and k,j are integers.

Proof. By Lemma 2.2, there exists a solution v € C'**? to (6.4). The proposition is
verified for & = 0. If & > 1, the assertion that v € CF'+*0 follows from Theorem 6.2
and Lemma 6.3. The last assertion in the proposition follows from Tg(ék+a’0(§, P)) C
ék+1+a’0(§, P) and the open mapping theorem applied to each finite k.

We now apply induction on j. Here we need to use a method from [16], which we have
used in Step 2 of the proof of Proposition 3.7. In fact, the proof is valid without any
essential changes. We briefly point out the arguments. For j = 1, the difference quotient
no(-,t) = M satisfies

(e, t) + T(a(-,t)0,05v(-,t)) = oxb(-,t) — T(dra(-, t)d.v(-, 1)) = 0.
Here t,t" are in the interior of P and ¢ =t + AV. For fixed ¢, we can show that dyv(-,t)
converges to w(-,t) and that w(-, ) is the unique solution to
w(e,t) +T(al-t)0,w(-,t)) = (-, t) — T(0ra(, t)0v(+,t)).
The right-hand side is of class CF*'+0, Inverting I + T'(a(-,t)dz) in the space CF+*0 for
each finite k shows that w is in C¥T17*9 which is d,v satisfying
o + T(a(-,t)0,0pv) = Oyb(-,t) — T(0wa(-,t)0,v(-,t)).

The equation is the same as (6.4), except for a different b. Inductively, this shows that v
is in CFH1+d(Q, P). O

In [3], the Riemann mapping with parameter [3] is proved for simply connected domains
in C. We now extend the result to complex structures. The reader is referred to [3] for
some elementary properties of C¥¥1+%3(Q) [0, 1]), where C¥+1*%J(Q),[0,1]) is denoted by
BFrei(Q,10,1]).
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Theorem 6.5. Let k,j be integers or infinity such that 0 < j < k and let 0 < a < 1.
Let P = [0,1]. Let I'(-,t): D — Q' be embeddings for all t € P, which satisfy T €
CH1+ai(D, P). Let J* be a family of complex structures on Q' such that the pull back of J*
by T'(-,t) defines a family of complex structures on D of class C*+*3(D, P). There exists a
family of mappings R(-,t) from Q' onto D such that (z,t) — R(T'(z,t),t) is a mapping of
class C**1+3(D, P) and the push-forward of J* via R(-,t) is the standard complex structure
on D for eacht € P.

Proof. To localize the problem in the parameter space, we mark three points a’, b, ¢! on
90! such that t — (a',b',d") is of class C/. Let R(-,t) be the Riemann mapping sending
a',b', ¢! to a,b, c on the unit circle. We want to show that R(-,t) has the desired regularity
for t near a given point t, € P.

We first want to find a family of mappings S(-,¢) from Q' onto D' such that the push-
forward of J' agree with the standard complex structure. To see this, we extend J* to a
larger simply connected domain € which contains the closure of Q. By the uniformization
theorem, there exists a diffeomorphism S(-, ) of class C*"1* which maps Q' onto the unit
disc or C such that S(-,tg).J% is the standard complex structure. By Kellogg’s theorem,
we can find the Riemann mapping sending S(-, ty) (%) onto the unit disk and match three
marked points. For t close to t;, we can find a family of diffeomorphisms of class CFT1+J,
defined near D, which fixes S(-, ) (€2%) pointwise and maps S(-,0)(€2) onto the unit disc.
Therefore, for regularity near ty, we have simplified the problem to the case where J% is
Jg and Qf are the unit disk. Then J! are defined by vector fields

-+ a(z, )0,

with a(-,t9) = 0. Since a is of class C*™®J then |a|,o < €, on D x P by choosing a small
neighborhood P of ty. Here, €, is the constant in Proposition 6.4. Let f(-,t) := u be the
solution to

u+ Tp(a(-,t)0,u) = =Tpa(-,1).
By Proposition 6.4, f is of class C¥¥17®3. Also | f|i1a0 < Claloa < 1. Therefore, F(-,t): z

z + f(z,t) is a family of diffeomorphisms from D onto D' such that F(-,t).J" are the
standard complex structure. By the Riemann mapping with parameter [3|, we conclude
that there exists a family of Riemann mappings Ro(-,¢) from D' onto the unit disc such
that (z,t) — Ro(F(2,t),t) is of class C*1*®J(D, P). Let M(-,t) be the linear fractional
transformation sending

(ata Et7 ét) = (R()(F(at? t): t), RO(F(btv t)? t)? RO(F<Ct7 t)7 t))
to (a,b,c). Since the mapping t — (@', bt, &) is of class C7, it is easy to verify that M is of
class CF1+%7 on D x P. Then R(-,t) = M(Ry(-,t),t) is of class C*¥* i on D x P. O

From the proof of Lemma 6.3, we also have the following for vector-valued functions.

Lemma 6.6. Let 2 C C be a bounded domain with 9} € Cl. Let v and b be vectors of n
continuous functions on Q2. Suppose that v € C'(2).

(i) Let A be an n x n matriz of continuous functions defined on Q. Then v satisfies

(6.5) v+ T(b+ Ad.v) =0
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if and only if v satisfies (6.3) and
(6.6) 0-v + b+ Ad,v = 0.

(i) Assume further that v(Q) is contained in an open subset D of C". Let A € C*(D)
be an n x n matrixz. Then v satisfies

(6.7) v+ T(b+ Av)d.v) =0
if and only if v satisfies (6.3) and
(6.8) Osv + b+ A(v)0,v = 0.

Here, the equations (6.3), (6.5)-(6.8) hold on €.
We now use the proof of Theorem 6.2 to study a problem in different directions.

Proposition 6.7. Let k be an integer and let 0 < a < 1. Let v be an embedded curve in
C of class CFT'7. Let Q,Qy be disjoint two open subsets of C such that both 09,0,
contain 7y as a relatively open subset. Assume that a; € C*T(Q U ~) satisfies |a;|p~ < 1
on O U~. Let E be an embedded C' curve in D such that D\ E is open in C and has
exactly two connected components wy,ws. Assume that u is a continuous map from D into
Q1 Uy UQy such that u: w; —  are J-holomorphic with respect to 0s + a;0,. Then E is
a curve of class CFite,

Proof. The proof is a slight modification of the proof of Theorem 6.2. The problem is local.
Fix zp € F and let p = u(zp). We may assume that near p, 7 is contained in the real axis
and 2y, {25 are contained in the lower and upper half planes. Applying a local change of
coordinates ¢; which is of class C¥+1% on ), U~y and fixes v pointwise, we may assume
that a; = O(Jy|/*™*). Define a := a; on ; U~y. Then X := &; + ad, is of class C*™ on
Q1 U~y UQy. Near p € 7, we apply a diffeomorphism ¢ of class C*1+® which transforms
X into 0. Let g = ¢ o ;0o u on w; U E, which is holomorphic away from E. Since g is
continuous and E is an embedded C! curve, then g is holomorphic at zy. It is easy to verify
that ¢ is biholomorphic near z,. Consequently, F is of class C**1*% near z,. O

However, the above result fails in higher dimensions.

Example 6.8. Let E be an embedded C' curve connecting 4, —i and dividing D into two
components wy,wy. Let A be a C* function on D which is positive on w; and negative on
wy. The existence of such a function is trivial, by taking it vanishing to infinity order along
E. We use the standard complex structure on D x C = {Imw < A(2)} U{Imw = A(2)} U
{Imw > A(2)}. Let u(z) := (2,0). Then u: w; — §; are holomorphic, 7 = {Imw = A\(z)}
is C*, u(D) = D x {0}, but F needs not to be C*.

We would like to mention that our main result fails for harmonic functions. For instance,
we take a continuous function f on [—1, 1] and then extend continuously to 9D. Extend f
harmonically by solving two Dirichlet problems on Dt and D~. Then f is not C* on D' in
general. One sees a similar result for the Neumann problem. Let {2 be a bounded domain
in C with 02 € C*. Suppose that f is continuous on 9¢2 and dt is the arc-length element



TWO-SIDED COMPLEX STRUCTURES 35

on Q. Then Wy(z) = £ [, f(t)log |y(t) — 2| dt is harmonic on C\ 9 and continuous on
C. However,

(e

0 Wy = 1) == [ 100, asr() =2 (0) .

Ouiy Wy = f(s) + - [ 0.2 = 0)

Here n(s) is the unit outer normal vector of J€). In particular, if f is not smooth, then W,
cannot be smooth simultaneously on Q and C\ Q. It is interesting that if W; € C'(C),
then f and Wy must be zero.

We conclude the paper by mentioning two open problems. Recall that Theorem 6.2 is
essential to the proof of Theorem 1.2. Both theorems deal with the case where f is a
function. If f is vector-valued, we have the following open problem.

Problem A. Let m > 2 be an integer and let 0 < a < 1. Let € be a bounded domain in C

with C*° boundary. Let a € C*(Q)) be an m x m matriz with a sufficiently small C* norm
on 2. Does 1+Tqad,: [CFT(Q)™ — [CF+(Q)]™ have a bounded inverse for all positive
integer k¢

The following boundary regularity problem arises from the proof of Proposition 3.7 on
J-holomorphic curves.

Problem B. Let Q2 be a bounded domain in C with C* boundary. Let D be a domain in
C" withn > 1. Let A be an n x n matriz of C* functions on D. Suppose that the operator
norm ||A(w)|| is less than 1 for each w € D. Let u:  — D be a C* map such that

(6.9) u+ To((9.u)A(u)) € C*(9).
Isu € C®(Q)?
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