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Abstract. Let Ω1,Ω2 be two disjoint open sets in R2n whose boundaries share a smooth
real hypersurface M as a relatively open subset. Assume that Ωi is equipped with a
complex structure J i which is smooth up to M . Suppose that at each point x ∈ M there
is a vector v ∈ TxM such that J1

xv and J2
xv are in the same connected component of

TxR
2n \ TxM . If f is holomorphic with respect to both structures in the open sets, then

f must be smooth on the union Ω1 ∪ M . Although the result, as stated, is far more
meaningful for integrable structures, our methods make it much more natural to deal with
the general almost complex structures without the integrability condition. The result is
therefore proved in the framework of almost complex structures.
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1. Introduction

In this paper, we study the regularity of boundary values of two functions which are
holomorphic with respect to two complex structures defined on two domains separated by
a real hypersurface. We are interested in the situation where the two functions have the
same continuous boundary values on the hypersurface. Notice that the regularity property
becomes an interior regularity problem when the two structures are the restriction of the
same complex structure, which is well established by the Newlander-Nirenberg theorem;
our results are concerned with a pair of distinct structures. To highlight the relevance of
our problem to yet another classical regularity problem, we recall the edge-of-the-wedge
theorem, which deals with two holomorphic functions on two wedges in Cn that have
the same appropriate boundary values on the edge. Under suitable assumptions on the
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wedges, the theorem concludes that both functions are actually the restriction of the same
holomorphic function defined on a domain containing the edge. The edge-of-the-wedge
theorem, originally due to Bogoljubov, has been extended in great generality by many
authors. For instance, see Rudin [19] and references therein, Morimoto [14], Pinčuk [17],
Bedford [1], Straube [22], Rosay [18], Forstnerič [7], and Eastwood-Graham [6]. Despite
some similarity between the classical edge-of-the-wedge theorem and our results, the study
of the regularity in this paper apparently gives rise to a new type of boundary regularity
problem even in one complex variable. Our methods are effective to study the case of not
necessarily integrable almost complex structures, and they allow us to deal with a pair of
systems of non-homogeneous equations.
Our main result is the following theorem.

Theorem 1.1. Let Ω1,Ω2 be disjoint open subsets of R2n such that their boundaries ∂Ω1,
∂Ω2 share a C∞ smooth real hypersurface M . Suppose that M is relatively open in each
∂Ωl. For l = 1, 2, let J l be an almost complex structure of class C∞ on Ωl ∪M . Suppose
that at each point x ∈ M , there is a vector v tangent to M at p such that J1

xv and J2
xv

belong to the same connected component of TxR
2n \ TxM . Let f be a continuous function

on Ω1 ∪M ∪Ω2. Suppose that (∂xj
+ iJ l∂xj

)f and (∂yj + iJ l∂yj)f , originally defined on Ωl,
extend to functions of class C∞ on Ωl ∪M for l = 1, 2 and 1 ≤ j ≤ n. Then f is of class
C∞ on Ω1 ∪M .

We will actually prove a more precise version of Theorem 1.1 under finite smoothness
assumptions made on the hypersurface, the structures, and the set of the derivatives of f in
the theorem. We emphasize that we make no convexity assumption on M with respect to
either of the almost complex structures. Therefore, it is not clear if the smoothness of the
function restricted to the hypersurface can be achieved via classical one-sided techniques
such as of Bishop discs; and, although it leads to a loss of regularity, the use of the Fourier
transform appears to be essential in our approach to the boundary value problem. We also
point out that our results in Section 6 for one complex dimension are sharp under finite
smoothness assumptions.
As mentioned earlier, the interior regularity of f for integrable almost complex struc-

tures is ensured by the well-known Newlander-Nirenberg theorem [15] (see also Nijenhuis-
Woolf [16] and Webster [25]). There are results on Newlander-Nirenberg theorem for pseu-
doconvex domains with boundary by Catlin [4] and Hanges-Jacobowitz [9]. See earlier
work of Hill [10] on failure of Newlander-Nirenberg type theorem with boundary.
As an application of our main theorem, let us observe how the common boundary values

arise from the Cauchy-Green operator for ∂ in C. Let X = ∂z + a∂z with a, |a| < 1, being
a C∞ function on the closure of a bounded domain Ω with smooth boundary in C. To
seek new coordinates z + f(z) to transform ∂z + a∂z into a multiple of ∂z, we consider the
equation

(1.1) ∂zf + a(z)∂zf + b(z) = 0, z ∈ Ω.

where b is C∞ on the closure of Ω. To solve it, one considers the integro-differential equation

(1.2) f(z) + T (a∂zf)(z) + Tb(z) = 0, z ∈ Ω.
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Here T = TΩ is the Cauchy-Green operator

Tf(z) =
1

π

∫
Ω

f(ζ)

z − ζ
dξ dη.

The equation (1.2) is equivalent to (1.1) and an extra equation

(1.3)

∫
∂Ω

f(ζ)

ζ − z
dζ = 0, z ∈ Ω.

When f ∈ C(∂Ω), the jump formula implies that (1.3) is equivalent to f being the boundary
values of a function that is holomorphic on Ω′ = C \ Ω, continuous on Ω′, and vanishing
at ∞. See Lemmas 6.3 and 6.6 for details. To find a solution f that is C∞ on Ω for the
equation (1.1), we would like to invert the operator I + Ta∂z in Ck space for each finite k.
As an application of our main result, we will prove the following.

Theorem 1.2. Let 0 < α < 1 and let Ω ⊂ C be a bounded domain with C1+α boundary.
Let a, b ∈ Cα(Ω). There exists ϵα > 0 such that if ∥a∥α < ϵα, then (1.2) admits a unique
solution f ∈ C1+α(Ω). Assume further that a, b ∈ Ck+α(Ω) and ∂Ω ∈ Ck+1+α for an integer
k ≥ 0. Then f ∈ Ck+1+α(Ω). Consequently, the linear map I+Ta∂z from Ck+1+α(Ω) into
itself has a bounded inverse.

Theorem 1.2 yields a method to solve the equation (1.2) for boundary regularity of the
solutions. We will prove a version of the above theorem when the equation (1.2) depends
smoothly on a parameter. As a consequence, we will obtain a C∞ version of the Riemann
mapping theorem for complex structures and simply connected bounded domains with
smooth boundaries in the complex plane which depend (C∞) smoothly on a parameter.
Finally, we would like to explain the condition in Theorem 1.1 that J1

xv, J
2
xv be in the

same connected component of TxR
2n \ TxM . In one complex variable, this condition is

equivalent to J1, J2 defining the same orientation for TxR
2 when x ∈ M . This condition

is also necessary as illustrated by the following counter-example. Let J1 be the standard
complex structure defined by ∂z1 on the upper half-plane Ω+. Let J2 be the complex
structure defined by ∂z1 on the lower half-plane Ω−. Let M be the real axis, which is the
boundary of both Ω+ and Ω−. Let f be a holomorphic function on Im z1 > 0 which extends
continuously to Ω+ ∪M . On Ω−, let f(z1) = f(z1). We can find f which does not extend
as a C1 function on Ω+ ∪M . However, for any integer n > 1, the validity of the assertion
on the smoothness of f has no obvious connection with the orientations defined by J1, J2.
It is easy to extend the above counter-example to both cases where J1, J2 define the same
orientation or opposite orientations, by adding ∂z2 or ∂z2 to the one-dimensional structures,
when n = 2.
The paper is organized as follows.
In Section 2 we will recall some basic facts about the solution operator T for ∂ equations

for bounded domains in the complex plane. We will briefly address the invertibility of
I +Ta∂ when a has compact support in a domain Ω. The invertibility for this special case
will be used in Section 3 to study the interior regularity of J-holomorphic curves depending
on a parameter.
In Section 3 we give a detailed proof of the existence and the regularity of J-holomorphic

curves which depend on a parameter. The result is due to Nijenhuis-Woolf in [16] for the
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finite smoothness case. We take the opportunity to modify their proof to treat the C∞ case
in the z-variable, which is not in [16]. However, the authors do not know if the regularity
result holds for C∞ class in the parameter variable, which is another case left open in [16].
Section 4 contains some elementary estimates for Cauchy integrals for domains depending

on a parameter.
In Section 5, we will prove our main theorem by establishing a more precise finite smooth-

ness version of Theorem 1.1. The main step of the proof is to establish the smoothness of
f on the common boundary M . It is for this step that we need the assumptions on both
structures. Our basic technique is the Fourier transform applied on families of lines, or
straightened curves, in M . We will show that the Fourier transform of f on these lines
will decay uniformly within the families as if f is of the desired regularity. To apply the
two almost complex structures, we will use the flexibility that we can attach two families
of approximate J-holomorphic curves, one for each almost complex structure, to the same
family of the lines in M . After we establish the regularity of f on M , we will obtain the
regularity of f from one side of M by using families of genuine J-holomorphic curves. The
regularity in all variables will be obtained after we establish uniform bounds on the deriva-
tives of f on families of J-holomorphic curves attached to M . We should mention that the
methods of establishing the smoothness of a function via uniform boundedness of its deriva-
tives on families of curves have appeared in other works (for instance see Tumanov [23],
Coupet-Gaussier-Sukhov [5]).
In Section 6 we treat the one complex variable case, by establishing some sharp regularity

results. We will conclude the paper with some open problems.

2. Inverting I+TA∂z

In this section, we will recall estimates on the Cauchy-Green operator T and ∂zT . We
will discuss the inversion of I+TA∂z in spaces of higher order derivatives when A has a
small Cα norm. When A has compact support, we can invert I+TA∂z and I+TA∂z by
direct estimates. This is obtained in this section. In Section 6 we will finish the proof that
I+TA∂z is indeed invertible when A is a suitable scalar function, i.e. Theorem 1.2 is valid.
In fact, we will prove a parameter version for derivatives of any order by using our main
theorem and a method from [16].
We will systematically use the functions that depend on parameters as follows. To prove

Theorem 1.1, we need to build up smoothness of a function via its smoothness on a web
of curves and on uniform bounds of its derivatives on these curves. We will need two
families of curves; one consists of real curves in M and another consists of J-holomorphic
curves intersecting M transversally. We will need to study the Cauchy-Green operator T
on domains in J-holomorphic curves which depend on parameters. The regularity of J-
holomorphic curves which depend on parameters is given by Proposition 3.7. The estimates
on operators T on domains depending on parameters are in Lemma 4.1.
Throughout the paper, when a parameter set P is involved in Ω × P , Ω is a bounded

open set in a Euclidean space and P is the closure of a bounded open set in a Euclidean
space. We assume that two points a, b in the interior of Ω × P can be connected by a
smooth curve in the interior of length at most C|b− a|.
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We now recall spaces of functions with parameter defined in [16]. Let Ck(Ω) denote the
set of functions f such that all partial derivatives of order k are continuous functions on
Ω which extend continuously to Ω. The usual norm on Ck+α(Ω) is denoted by | · |k+α. For

integers k, j ≥ 0 and 0 ≤ α < 1, we define Ĉk+α,j(Ω, P ) to be the set of functions f defined
on Ω × P such that for all integer 0 ≤ l ≤ j, the map t 7→ ∂ltf(., t) is continuous from P
into Ck(Ω) and such that

∥f∥k+α,j := max
0≤l≤j

sup
t∈P

|∂ltf(·, t)|k+α <∞.

Define

Ĉ∞,j(Ω, P ) :=
∞∩
k=1

Ĉk,j(Ω, P ), C∞,j(Ω, P ) := Ĉ∞,j(Ω, P ).

To simplify notation, the parameter set P will not be indicated sometimes.
Let Ω be a bounded domain in C. The ∂ solution operator T and S = ∂zT are

Tf(z) :=
1

π

∫
Ω

f(ζ)

z − ζ
dξ dη, Sf(z) := − 1

π
p.v.

∫
Ω

f(ζ)

(z − ζ)2
dξ dη.(2.1)

It is well-known that ∂zT is the identity on Lp(Ω) when p > 2. Assume now that 0 < α < 1.
When f ∈ Cα(Ω) and ∂Ω ∈ C1+α, one has

Sf(z) = − 1

π

∫
Ω

f(ζ)− f(z)

(z − ζ)2
dξ dη − f(z)

2πi

∫
∂Ω

dζ

ζ − z
.(2.2)

If f has compact support in Ω, or if f ∈ Ck+α(Ω) and ∂Ω ∈ Ck+1+α, then

(2.3) |Tf |k+1+α ≤ Ck+1+α|f |k+α, |Sf |k+α ≤ Ck+1+α|f |k+α.

See Bers [2] and Vekua [24] (p. 56). The above estimates for domains with parameter will
be derived in Section 4. Recall that

(2.4) ∂zSf = S∂zf, ∂zSf = ∂zf,

where the first identity needs f to have compact support in Ω.
For f ∈ Ĉk+α,j(Ω, P ), define Tf(z, t), Sf(z, t) by (2.1) and (2.2) by fixing the parameter

t.

Lemma 2.1. Let k, j ≥ 0 be two integers and let 0 < α < 1. Let Ω ⊂ C be a bounded
domain with ∂Ω ∈ Ck+1+α. Then

T : Ĉk+α,j(Ω, P ) → Ĉk+1+α,j(Ω, P ), ∥Tf∥k+1+α,j ≤ Ck+1+α∥f∥k+α,j,

S : Ĉk+α,j(Ω, P ) → Ĉk+α,j(Ω, P ), ∥Sf∥k+α,j ≤ Ck+1+α∥f∥k+α,j,(2.5)

for some positive constant Ck+1+α.

Proof. By (2.2), we get S(Ĉk+α,j) ⊂ Ĉk,j. We can verify that ∂tS = S∂t on Ĉα,j for j ≥ 1.

Thus S(Ĉk+α,j) ⊂ Ĉk+α,j by (2.3).

The Cauchy kernel is integrable. So T (Ĉ0,j(Ω, P )) ⊂ Ĉ0,j(Ω, P ). Also ∂tT = T∂t on Ĉ0,j

for j ≥ 1. The rest of assertions follows from ∂zT = S and ∂zT = I. �
By an abuse of notation, we define ∂zf = ∂zf.
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Lemma 2.2. Let k, j ≥ 0 be two integers and let 0 < α < 1. Let Ω be a bounded domain
in C. Let A ∈ Ĉk+α,j(Ω, P ) be an m ×m matrix. There exists ϵα > 0, depending only on
α, such that the following hold.

(i) If ∂Ω ∈ C1+α and |A|α,0 < ϵα, then

I+TA∂z, I+TA∂z :
[
Ĉ1+α,j(Ω, P )

]m →
[
Ĉ1+α,j(Ω, P )

]m
have bounded inverses.

(ii) If A(·, t) have compact support in Ω for all t ∈ P and |A|α,0 < ϵα, then

I+TA∂z, I+TA∂z :
[
Ĉk+1+α,j(Ω, P )

]m →
[
Ĉk+1+α,j(Ω, P )

]m
have bounded inverse.

Proof. We want to show that the inverse of I+TA∂z is given by

L = I+
∞∑
l=1

(−1)l(TA∂z)
l.

Since (TA∂z)
l = TA(SA)l−1∂z, we need to show that the norms of (SA)l−1 for various

derivatives tend to zero sufficiently fast. When S operates on functions with compact sup-
port, it commutes with ∂t, ∂z, ∂z somewhat. However, differentiating the operator product
(SA)l requires counting terms efficiently as l tends to ∞.
(i). Fix 0 < θ < 1/2. Note that

∥fg∥k+α,j ≤ Ck,j∥f∥k+α,j∥g∥k+α,j.

By (2.5), we have ∥SA∥α,0 ≤ C ′
α∥A∥α,0. Thus,

∥(SA)l∥α,0 ≤ (Cα∥A∥α,0)l ≤ θl

if ∥A∥α,0 is sufficiently small. Then

∥TA(SA)l−1∂zf∥1+α,0 ≤ Cαθ
l−1∥A∥α,0∥f∥1+α,0.

This shows that for f ∈ Ĉ1+α,0, the series
∑∞

l=0(−1)lTA(SA)l−1∂zf converges to Lf ∈
Ĉ1+α,0. Moreover, ∥Lf∥1+α,0 ≤ C∥f∥1+α,0. It is straightforward that L(I+TA∂z) and

(I+TA∂z)L are the identity on Ĉ1+α,0. This verifies (i) for j = 0. The case of j > 0 will
follow from the argument in (ii) below, by using ∂tT = T∂t and ∂tS = S∂t.

(ii). We need to show that
∑

∥(SA)l∥k+α,j converges when A has compact support in
Ω. Denote by Ck+α,j a positive constant depending only on k, j, and ∥A∥k+α,j. By (2.4)
and ∂tS = S∂t, we can write

∂SA = S̃∂̃A,

where S̃ is either S or I, and ∂, ∂̃ are of form ∂z, ∂z, or ∂t. Denote by ∂K a derivative in z,
z of order |K|. Then ∂(SA)l equals a sum of terms of the form

Sm1(∂
K1A) · · ·Sml

(∂KlA)∂Kl+1 , |K1|+ · · ·+ |Kl+1| = 1.

Here Smi
is either S or I; in particular, ∥Smi

∥k+α,j ≤ Ck+α,j for all mi. The sum has at
most l + 1 terms. Thus ∂K∂It (SA)

l is a sum of at most (l + 1)|K|+|I| terms of the kind

(2.6) Sm1(∂
K1∂I1t A) · · ·Sml

(∂Kl∂Ilt A)Sml
∂Kl+1∂

Il+1

t .
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Assume that |K| ≤ k, |I| ≤ j and l > k + j. With Cα ≥ 1,

∥∂K∂It ((SA)lf)∥α,0 ≤ (l + 1)k+jC l
α(1 + ∥A∥k+α,j)

k+j∥A∥l−k−j
α,0 ∥f∥k+α,j

≤ (l + 1)k+jCk+α,j∥f∥k+α,jθ
l−k−j.

This shows that ∥(SA)l∥k+α,j ≤ C ′
k+α,j(l + 1)k+jθl−k−j. Hence

∥TA(SA)l∂z∥k+1+α,j ≤ Ck+α,j(l + 1)k+jθn−k−j.

We conclude that ∥(I+TA∂z)−1∥k+1+α,j <∞.

The proof for I+TA∂z is obtained by minor changes. Indeed, denoting by Cf = f
the complex conjugation, we write (TA∂z)

l = TAC(SAC)l−1∂z. We have ∂zC = C∂z and
∂zC = C∂z, and since we may assume that t are real variables, we also have ∂tC = C∂t.
Thus ∂K∂It (SAC)

n is a sum of at most (l + 1)|K|+|I| terms of the form

Sm1(∂
K1∂I1t A)C · · ·Sml

(∂Kl∂Ilt A)C∂
Kl+1∂

Il+1

t .

Substitute the above for (2.6). The remaining argument follows easily. �

We need a simple version of Borel theorem with parameter.

Lemma 2.3. Let N be a positive integer or ∞. Let 0 ≤ j < ∞ be an integer and
0 ≤ α < 1. Let ϵk be positive numbers for 1 ≤ k < N and let ϵN = 0 for N < ∞.
Let fI ∈ ĈN−1−|I|+α,j(Rn, P ) for 0 ≤ |I| < N with I = (i1, . . . , im). Assume that all
fI(·, t) have support contained in a compact subset K of the unit ball Bn. There exists

Ef ∈ ĈN−1+α,j(Rn × Rm, P ) such that ∂IyEf(x, 0, t) = fI(x, t). Moreover, Ef(·, t) have
compact support in the unit ball of Rn ×Rm and

(2.7) ∥Ef∥k+α,j ≤ ϵk+1 + CN,k,K

∑
|I|≤k

∥fI∥k−|I|+α,j, 0 ≤ k < N.

Here CN,k,K depends also on ϵ1, . . . , ϵk and the upper bound of ∥fI∥k−|I|+α,j for |I| ≤ k.

Proof. We extend f one dimension at a time. Start with m = 1. We consider an extension
of the form

(2.8) Ef(x, y, t) =
∑
l<N

yl

l!
gl(x, t)g(δ

−1
l y),

where g is a smooth function of compact support in (−1, 1) and g(y) = 1 for |y| < 1/2.

We will also choose δl which decreases to 0 so rapidly that Ef is in ĈN−1+α,j and (2.7)

holds. Here ylgl(x, y, t) is a substitute of ylfl(x, t) such that ylgl(x, y, t) is in ĈN−1+α,j. We
also need the correct l-th y-derivative of ylgl(x, y, t) due to the presence of yl

′
gl′(x, y, t) for

l′ < l.
Denote byBn

δ the open ball inRn centered at the origin with radius 0 < δ < 1
2
dist(K, ∂Bn).

Let ϕ be a smooth function on Rn with support in Bn
δ satisfying

∫
Rn ϕ(y) dy = 1. With

al ∈ ĈN−1−l,j to be determined, consider

gl(x, y, t) =

∫
Rn

al(x− yz, t)ϕ(z) dz.
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Fix t. We first consider l ≤ k < N . For |I| = k and y ̸= 0, we have

(2.9) ∂I(ylgl(x, y, t)) =
∑

i1+|I2|=k

Ci1I2∂
i1
y y

l∂I2
∫
al(x− yz, t))ϕ(z) dz

with i1 ≤ l. Write I2 = I3 + I4 with |I3| = k − l and |I4| = l − i1. We have

∂I3gl(x, y, t) =
∑

|L|=|I3|

∫
∂Lal(x− yz, t)ϕI3L(z) dz

for some ϕI3L with support in Bn
δ . When y ̸= 0, changing variables and taking derivative

∂I4 , we get

∂I2gl(x, y, t) =
∑

|L|=|I3|

∫
1

y|I4|+n
∂Lal(z, t)ϕ̃I3I4L

(
x− z

y

)
dz.

Changing variables again, we get

y|I4|∂I2gl(x, y, t) =
∑

|L|=|I3|

∫
∂Lal(x− yz, t)ϕ̃I3I4L(z) dz.

The right-hand side and its derivatives in t of order at most j are clearly continuous
functions. Then by (2.9), bl(x, y, t) := ylgl(x, y, t) are of class Ĉk+α,j for l ≤ k. This shows

that bl ∈ ĈN−1+α,j for all l. By the product rule, at y = 0

∂lybl(x, y, t) = l!al(x, t), ∂l
′

y bl′(x, y, t) = 0, l′ < l.

Starting with a0 = f0, we find al ∈ ĈN−1−l+α,j inductively such that ∂ly
∑

l′≤l bl′(x, y, t)
equals l!fl(x, t) at y = 0. We also have

∥bl∥l+α,j ≤ Cl,K∥al∥α,j.
Without loss of generality, we may assume that ϵl decreases. We choose small δl with
0 < δl < 1/m such that b̃l(x, y, t) := ylgl(x, t)g(δ

−1
l y) satisfies

∥b̃l∥l+α,j ≤ 2−lϵl.

Let Ef be defined by (2.8). The estimate (2.7) is then immediate and Ef is in ĈN−1+α,j

and satisfies ∂lyEf(x, y, t) = fl(x, t) for l < N .
For m > 1, set y = (y′, ym) and y′ = (y1, · · · , ym−1). Suppose that we have found

extensions f̃l ∈ ĈN−1−l+α,j(Rn×Rm−1, P ) such that ∂I
′

y′ f̃l = fI′l at y
′ = 0 for all |I ′| < N− l

and

(2.10) ∥f̃l∥k−l+α,j ≤ e′k+1,K + Ck,K

∑
|I′|≤k−l

∥fI′l∥k−|I′|−l+α,j, k < N,

where e′k,K > 0 will be determined later. Moreover, assume that f̃l(·, t) have support in a

compact subset K ′ of the unit ball of Rn+m−1, where K ′ depends only on K. Using the
one-dimensional result again, we get Ef ∈ ĈN−1+α,j(Rn × Rm, P ) with compact support

in the unit ball of Rn+m. Furthermore, ∂lynEf = f̃l at yn = 0 and

∥Ef∥k+α,j ≤ e′k+1,K + C ′
k,K

∑
0≤l≤k

∥f̃l∥k−l+α,j, k < N.
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Choose e′k+1,K > 0 small enough to ensure that combining the above inequality with (2.10)
yields (2.7). �

The above proof for non-parameter case is in [11] (pp. 16 and 18). When f is defined on
yn ≤ 0 with ∂kxn

f = fk on yn = 0, the above extension Ef can be replaced by f on yn ≤ 0.

The same conclusions on Ef hold. Seeley [21] has a linear extension E : C∞(R
n

+) → C∞(Rn)

such that E : Ck(R
n

+) → Ck(Rn) have bounds depending only on k.

3. J-holomorphic curves and derivatives on curves

This section is mainly devoted to the study of J-holomorphic curves with parameter. The
result is essentially in the work of Nijenhuis-Woolf [16]. See also Ivashkovich-Rosay [12]
for another regularity proof and existence of J-holomorphic curves with prescribed jets.
The proof below relies only on some basic facts about the Cauchy-Green operator and the
inversion of I+TA∂ζ discussed in Section 2. We also study how to obtain the smoothness of
a function from its smoothness on a web of curves and uniform bounds of its derivatives on
the curves (see Proposition 3.9). This result will be one of main ingredients in the proof of
Theorem 1.1. Our results are local. Throughout the paper, a real hypersurface M will be
a relatively open subset of the boundary of a domain Ω ⊂ R2n, or a closed subset without
boundary in the domain.

Definition 3.1. Let k ≥ 0 be an integer and let 0 < α < 1. We say that an almost complex
structure J of class Ck+α on Ω (resp. Ω∪M) is defined by n vector fields X1, . . . , Xn if Xl’s
and their conjugates are pointwise C-linearly independent on Ω (resp. Ω∪M) and Xl’s are
of class Ck+α on Ω (resp. Ω ∪M).

Note that for p ∈ Ω, Jp := J(p) is defined to be the linear map on TpΩ (resp. Tp(Ω∪M))
such that v+iJpv is in the linear span ofX1(p), . . . , Xn(p) for any v ∈ TpΩ (resp. Tp(Ω∪M)).
The operator norm ∥A∥ of a linear map A : TpΩ → TpΩ is defined as max{|Av| : |v| = 1}
with |a∂x + b∂y| = (

∑n
l=1 |al|2 + |bl|2)

1
2 being the Euclidean norm on TpΩ.

Definition 3.2. We say that a diffeomorphism φ transforms X1, . . . , Xn into X̃1, . . . , X̃n,
if dφ(Xl) are locally in the span of X̃1, . . . , X̃n.

A linear complex structure J on R2n is given by

(3.1) Xl =
∑

1≤s≤n

(bls∂zs + als∂zs), l = 1, . . . , n,

where constant matrices A := (als) and B := (bls) satisfy∣∣∣∣B A
A B

∣∣∣∣ ̸= 0.

The map z = wB+wA transforms ∂w1 , . . . , ∂wn into X1, . . . , Xn, and hence Jst into J given
by

(3.2) J = KJstK
−1, Jst =

(
0 I
− I 0

)
, K =

(
Re (B + A) Im (A−B)
Im (A+B) Re (B − A)

)
.
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Thus under a local change of coordinates by shrinking Ω or Ω ∪M , an almost complex
structure J is locally given by

(3.3) Xl = ∂zs +
∑

1≤s≤n

als(z)∂zs , l = 1, . . . , n,

where the operator norm of A = (als) satisfies ∥A(z)∥ < 1 on Ω (resp. Ω∪M). Conversely,
notice that the condition ∥A∥ < 1 ensures that n vector fields of the form (3.3) define an
almost complex structure.
In the next lemma, we give a quantitative condition and a geometric condition, with

each ensuring the assumption made on the two almost complex structures in Theorem 1.1.

Lemma 3.3. Let J1, J2 be two linear complex structures on R2n. Let M be a hyperplane
in R2n. If ∥J2 − J1∥ < 2 or if T0M ∩ J1T0M ̸= T0M ∩ J2T0M then there exists v ∈ T0M
such that J1v, J2v are in the same connected component of T0R

2n \ T0M .

Proof. Denote by T0(M,J l) := T0M ∩ J l
0T0M the J l-holomorphic tangent space at the

origin for l = 1, 2. Let ω1, ω2 be the two connected components of T0R
2n \T0M . Note that

J l sends one of two connected components of T0M \T0(M,J l) into ω1 and the other into ω2.
Thus the assertion is trivial if T0(M,J1) ̸= T0(M,J2). Assume that they are identical. By
choosing an orthonormal basis for T0R

2n, we may assume that T0(M,J1) = {xn = yn = 0}.
Since M contains xn = yn = 0, then M is defined by axn + byn = 0 with a2 + b2 = 1.
After a change of orthonormal coordinates, M and T0(M,J1) are defined by yn = 0 and
xn = yn = 0 respectively. We still have ∥J2 − J1∥ < 2 since orthogonal transformations
preserve the operator norm. Now write

J l

(
∂x′

∂y′

)
= Bl

(
∂x′

∂y′

)
, J l

(
∂xn

∂yn

)
= Cl

(
∂x′

∂y′

)
+Dl

(
∂xn

∂yn

)
,

where Bl, Cl, Dl are real matrices, x′ = (x1, · · · , xn−1) and y
′ = (y1, · · · , yn−1). In particu-

lar, D2
l = − I. We want to show that the coefficients of ∂yn in J l∂xn have the same sign.

Otherwise, we can write

D1 =

(
a1 b1

−1+a21
b1

−a1

)
, D2 =

(
a2 −b2

1+a22
b2

−a2

)
, b1 > 0, b2 > 0.

Since ∥D2 −D1∥ < 2 we have b1 + b2 < 2 and b−1
1 + b−1

2 < 2 which is a contradiction. �
It is easy to see that when n = 1 the condition that J1v and J2v to be on the same side

of M for some v ∈ T0M is equivalent to that J1, J2 define the same condition for R2. In
higher dimensions, whether J1, J2 define the same orientation or not is not related to the
validity of assertions in Theorem 1.1.

Example 3.4. Lemma 3.3 and Theorem 1.1 fail easily for the triplet

{Jst,−Jst, {y1 = 0}}.
Note that Jst and −Jst define the same orientation if and only if n is even. On the other
hand, Theorem 1.1 is valid for

{Jst, J2
st × (−J2n−2

st ), {y1 = 0}}.
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Here J2k
st denotes the standard complex structure on R2k. A less trivial example is given

by the following. Let 0 ≤ t ≤ π, and let J t be defined by

X t
1 = (cos t ∂x1 + sin t ∂x2) + i∂y1 , X t

2 = (− sin t ∂x1 + cos t ∂x2) + i∂y2 .

The conclusions in Lemma 3.3 and Theorem 1.1 fail for {J0, Jπ, {y2 = 0}} with ∥J0−Jπ∥ =
2. Under new orthonormal coordinates w1 = (x2 + iy1)/

√
2, w2 = (−x1 + iy2)/

√
2, J t is

given by

(1 + sin t)∂w1 − cos t∂w2 − (1− sin t)∂w1 − cos t ∂w2 ,

cos t ∂w1 + (1 + sin t)∂w2 + cos t ∂w1 − (1− sin t)∂w2 .

The above can be put into the form (3.3) with

At =

(
0 − cos t

1+sin t
cos t

1+sin t
0

)
.

Note that ∥At∥ ≤ 1. However, the authors do not know if Theorem 1.1 or Lemma 3.3 holds
for two structures J1, J2 of the form (3.3) with corresponding ∥Al∥ < 1 for l = 1, 2. Note
that such an almost complex structure preserves the standard orientation of Cn.

Definition 3.5. Let J be an almost complex structure defined by vector fields X1, . . . , Xn

of class Ck+α on Ω with k ≥ 0 and 0 < α < 1.

(i) A C1 map u : D → Ω is called a J-holomorphic curve if du(∂ζ) is in the span of
X1, · · · , Xn, namely if

du(∂ζ) = V (ζ) ·X(u(ζ)) = V1(ζ) ·X1(u(ζ)) + · · ·+ Vn(ζ) ·Xn(u(ζ)).

(ii) Let k ≥ 1. A C1 map u : D+ → Ω is called an approximate J-holomorphic curve of
order k attached to the curve u(x, 0), if

(3.4) du(∂ζ) = V (ζ) ·X(u(ζ)) + F (ζ) ·X(u(ζ)), |F (ζ)| = o(| Im ζ|k−1).

As emphasized earlier, we may assume that J is locally given by vector fields of the form
(3.3). Therefore locally, a J-holomorphic curve u : D → Ω satisfies the following equations

∂ζul =
∑

1≤s≤n

als(u)∂ζus, l = 1, . . . , n

which can be written as a row vector

(3.5) ∂ζu = ∂ζuA(u).

Note that one cannot prescribe the boundary for a J-holomorphic disc. However, we can
prescribe the boundary of the approximate J-holomorphic disc, defined above. This fact
will be used in the proof of Theorem 1.1. Also, notice that if f is a function on Ω and u is
an approximate J-holomorphic curve the above equation (3.4) implies that

∂ζ(f(u(ζ)) = V (ζ) · (Xf)(u(ζ)) + F (ζ) · (Xf)(u(ζ)).
When u is J-holomorphic, this identity becomes

∂ζ(f(u(ζ)) = (Xf)(u(ζ)) · ∂ζu.
The next two results deal with the existence of the two types of curves in Definition 3.5.
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Lemma 3.6. Let k ≥ 0 be an integer or k = ∞, and let 0 ≤ α < 1. Let J be an almost
complex structure of class Ck+α(Ω) defined by vector fields

Xl =
∑

1≤s≤n

bls∂zs +
∑

1≤s≤n

als∂zs , l = 1, . . . , n.

Set A := (als) and B := (bls). Let k′ ≥ 0 and 0 ≤ j < ∞ be such that j + k′ ≤ k, and let
0 < r < 1. Let K be a compact subset of Ω and assume that u0 : (−1, 1) × P → K is a

map of class Ĉk′+1+α,j((−1, 1), P ). Then there exists a map u : [−r, r]× [−δ, δ]×P → Ω of

class Ĉk′+1+α,j([−r, r]× [−δ, δ], P ) satisfying the following:

(i) u(x, 0, t) = u0(x, t) and

du(∂ζ) = V (ζ, t) ·X(u(ζ, t)) + F (ζ, t) ·X(u(ζ, t)),(3.6)

|F (ζ, t)| = o(|y|k′), α = 0; |F (ζ, t)| = O(|y|k′+α), 0 < α < 1,(3.7)

where ζ = x+ iy.
(ii) Let ej′+1 > 0. On [−r, r]× [−δ, δ]× P the norms of u, V and F satisfy

∥u∥j′+1+α,j + ∥(V, F )∥j′+α,j ≤ C∗
j′+j max(∥u0∥j′+1+α,j, ∥u0∥j

′+j+2
j′+1+α,j) + ej′+1, j′ < k′ + 1.

Moreover, C∗
0(1 + ∥u0∥1,0)δ > 1 and C∗

j′+j depends on K,Ω, |J |j′+j+α and infΩ

∣∣∣∣B A
A B

∣∣∣∣.
Proof. We suppress the parameter t in all expressions. We first determine a unique set
of coefficients aj′(x) for 1 ≤ j′ < k′ + 2 such that as a power series in y, u(x, y) =
u0(x) +

∑
j′≥1 aj′(x)y

j′ satisfies (3.6)-(3.7). It is convenient to consider u as the real map

(x, y) 7→ (Reu, Imu) still denoted by u, and to rewrite the equations as

(3.8) du(∂y) = J(u)(du(∂x)) + F1(x, y) · ∂∗, F1(x, y) = o(|y|k′).

Here ∂∗ = (∂u1 , . . . , ∂u2n) is evaluated at u(ζ, t). In the matrix form, let J be the matrix
defined by (3.2). Then we need to solve

∂yu = ∂xuJ(u) + F2(x, y), |F2(x, y)| = o(|y|k′).

We solve the equation formally, which determines aj′(x) uniquely for 1 ≤ j′ < k′ + 2, and

then apply Lemma 2.3. This gives a map u : ([−r, r]× [−1, 1])×P → Rn of class Ĉk′+1+α,j

satisfying the stated norm estimate in (ii). By |u(x, y)− u(x, 0)| ≤ C∗
0(∥u0∥1,0 + e1)|y| and

the compactness of K, we find δ > 0 such that u maps [−r, r] × [−δ, δ] × P into Ω. We
have obtained (3.8). Thus

2du(∂ζ) = du(∂x) + idu(∂y) = du(∂x) + iJ(u)(du(∂x)) + iF1(x, y) · ∂∗.

Note that du(∂x) + iJ(u)(du(∂x)) = V1(z) · X(u(z)). Write ∂∗ in terms of Xl’s and X l’s

by using the inverse of
(
B A

A B

)
where A and B are given by (3.1). We get (3.6) and (3.7).

Finally we can estimate the norms of V and F via V1, F1, F2 and the inverse of
(
B A

A B

)
. �
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In Section 2, we have defined Ĉk+α,j and ∥ · ∥k+α,j. Following [16], we define for j ≤ k
and 0 ≤ α < 1

Ck+α,j(Ω, P ) :=
∩

0≤l≤j

Ĉk−l+α,l(Ω, P ), |u|k+α,j := max
0≤l≤j

∥u∥k−l+α,l.

We also define

C∞,j(Ω, P ) :=
∞∩
k=1

Ck,j(Ω, P ).

One can see that
(
Ck+α,j(Ω, P ), |.|k+α,j

)
is a Banach space. By assumptions on Ω and P ,

we have

Ck+α,k(Ω, P ) ⊃ Ck+α(Ω× P ).

In particular, if f ∈ Ck+α,j ∩ C1 and u ∈ Ck+α,j(Ω, P ), then f ◦ u ∈ Ck+α,j(Ω, P ) whenever
the composition is well-defined. In general, for φ(x, t) = (φ̃(x, t), t) with φ̃ being a map
from Ω× P into Ω′ of class Ck+α,j ∩ C1, we have

|v ◦ φ|k+α,j ≤ C(1 + |φ̃|1,0 + |φ̃|k+α,j)
1+k+j|v|k+α,j.

Let D be the unit disc in C, Dr the disc of radius r > 0, and D+
r = Dr ∩{Im z > 0}. The

following result gives coordinate maps in J-holomorphic curves. To estimate the Cauchy-
Green operator T on domains in J-holomorphic curves, we will also need to reparametrize
the J-holomorphic half-discs, which are obtained by cutting a J-holomorphic disc by the
real hypersurface M . The reparameterization, which is not necessary J-holomorphic, is

given by a mapping R(·, t) which send D+

r onto the half-discs. The existence and regularity
of J-holomorphic curves for finite smoothness case is proved by Nijenhuis and Woolf ([16],
pp. 459-460). They also stated a version of J-holomorphic curves with parameter passing
through the same point ([16], p. 461). Since the following precise result is needed for our
main results, we prove it in detail. We will also deal with C∞ structures.

Proposition 3.7. Let k ≥ 1 be an integer or k = ∞ and let 0 < α < 1. Let j ≤ k
be an integer. Let J be an almost complex structure of class Ck+α defined on Ω by vector
fields X1, · · · , Xn. Let M ⊂ Ω be a Ck+1+α real hypersurface containing the origin 0. Let
e : M → Cn be a Ck map such that e ·X = e1X1 + · · ·+ enXn is not tangent to M at each
point of M . Then there exist two Cj diffeomorphisms u and R from Dn

r onto their images
in Ω satisfying the following:

(i) For each t ∈ Dn−1
r , u(·, t) is J-holomorphic and embeds Dr onto D(t).

(ii) u(0, t) ∈M and D(t) intersects M transversally along a curve γ(t). Also, u(0) = 0
and du(0, t)(∂ζ) = (e ·X)(u(0, t)).

(iii) R(·, t) respectively sends D+
r , (−r, r),Dr into Ω+∩D(t),M∩D(t), D(t) and satisfy

R(0) = 0.
(iv) Moreover u and R are in Ck+1+α,j(Dr,Dn−1

r ).

Proof. Since the result is purely local, we may assume that

Xl = ∂zl +
∑

1≤s≤n

als(z)∂zs , l = 1, . . . , n,
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where A := (als) satisfies A(0) = 0 and ∥A(z)∥ < 1 on Ω. Applying a unitary change of
coordinates, we may assume that T0M = {yn = 0}. By a Ck+1+α change of coordinates
which is tangent to the identity, we may assume that M is in yn = 0. By dilation, we may
assume that Ω contains Dn

2 and that on it we have ∥A(z)∥ < 1/4 and |A|j′+1+α < 1/C∗.
Here C∗ will be determined later and

j′ := max{0, j − 1} < k.

Finally, by a dilation in the unit disc D, we achieve ∥e∥Cj(M) < 1/4.

Step 1. Existence of a solution u in class Cj′+1+α,j′.
At the origin, Xl(0) = ∂zl . Let ẽ1, . . . , ẽn−1 be the standard basis of Cn−1 × {0} and set

P := Dn−1

1/(2n). It follows from the assumption made on e · X that ẽ1, . . . , ẽn−1, e(t, 0) are
C-linearly independent.
Recall that u : D×P → Ω is such that u(·, t) is a J holomorphic disc for all t ∈ P if and

only if u satisfies the equation

(3.9) ∂ζu = ∂ζuA(u).

Denote by B1 the closed unit ball of the Banach space B := [Cj′+1+α,j′(D, P )]n equipped
with the norm |.|j′+1+α,j′ . By an abuse of notation we will drop the exponent n in the rest
of the proof. Consider for u ∈ B1

(3.10) Ψ(u)(ζ, t) :=
1

4
(t, 0) + ζe(t, 0) + [Φ(u)− P1Φ(u)](ζ, t),

where Φ(u) := TD(∂ζuA(u)) and P1Φ(u)(ζ, t) := Φ(u)(0, t) + ζ∂ζΦ(u)(0, t). One can verify

that Ψ(u)(0, t) = 1
4
(t, 0) and ∂ζΨ(u)(0, t) = e(t, 0). Therefore, if u = Ψ(u) then u(., t) is

a J-holomorphic disc satisfying u(0, t) ∈ M and du(0, t)(∂ζ) = (e ·X)(t, 0). According to

Lemma 2.1, Φ maps B1 to B. Moreover P1Φ(u) is of class Cj′ in t and is a polynomial in ζ.
In particular, P1Φ(u) and Ψ(u) are in B. Moreover since |A|j′+1+α < 1/C∗ on D2 × P , the
map Ψ is a contraction from B1 into itself. Indeed, we have

A(u2)− A(u1) =

∫ 1

0

{(u2 − u1) · (∂uA)(u1 + s(u2 − u1))

+ (u2 − u1) · ∂uA(u1 + s(u2 − u1))} ds,
|Φ(u2)− Φ(u1)|j′+1+α,j′ ≤ C|∂ζu2A(u2)− ∂ζu1A(u1)|j′+α,j′(3.11)

≤ C ′(1 + |(u1, u2)|j+2
j′+1+α,j′)|A|j′+1+α|u2 − u1|j′+1+α,j′ .

Notice that here we need A to be in Cj′+1+α instead of Cj′+α. And j′ + 1 = k if j′ = k − 1.
We also have

|P1Φ(u2)− P1Φ(u1)|j′+1+α,j′ ≤ C|Φ(u2)− Φ(u1)|j′+1+α,j′ .

Recall that after dilation, |A|j′+1+α < 1/C∗. It follows that Φ(u) and P1(Φ(u)) have small
norms on B1. Thus, Ψ is a contraction map on B1 into itself and therefore it has a fixed
point u ∈ B1.

Step 2. Regularity of u in class Ĉ1+α,k for finite k.
This step is the most subtle step of the proof and certainly less classical than the others.

We follow the arguments in [16]. This type of arguments has also been used in the Dirichlet
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and Neumann problems on planar domains with parameter [3], including the C∞ case. Here
we need to restrict to spaces of finitely derivatives as in [16].
In this step, we assume that k is finite and j = k = j′ + 1. We have proved that

u ∈ B1 ⊂ Ck+α,k−1(D, P ). In order to prove that u ∈ Ck+1+α,k, we first need to show that

∂kt u ∈ Ĉ1+α,0(D, P ), namely that u is k times differentiable in the t-variable, that t 7→ ∂kt u
is a continuous map from P to C1(D) and that |∂kt u(·, t)|1+α is uniformly bounded. We will

then show that u ∈ Ĉ2+α,k−1, which will be achieved in the next step by shrinking D.
Recall that u satisfies Ψ(u) = u where Ψ is defined by (3.10). Rewrite u = Ψ(u) as

u = h+ Φ(u)− P1Φ(u),

Φ(u) = T (∂ζuA(u)), P1Φ(u)(ζ, t) = Φ(u)(0, t) + ζ∂ζΦ(u)(0, t),

where T = TD, h is holomorphic in ζ and of class Ck in t, and hence h ∈ Ck+1+α,k. By
differentiating k − 1 times the previous equation in the t-variable, we obtain

v = TA1(u)v − P1TA1(u)v +Bk−1(u).(3.12)

Here v := ∂k−1
t u ∈ Ĉ1+α,0(D, P ) and

A1(u)v := ∂ζvA(u), when k = 1;

A1(u)v := ∂ζvA(u) + ∂ζu(∂uA(u)v + ∂uA(u)v), when k ≥ 2;

P1TA1(u)v := (TA1(u)v)(0, t) + ζ∂ζ(TA1(u)v)(0, ·),

Ek−1(u) :=
∑

1≤l≤k−2

(
k − 1

l

)
∂ζ∂ltu ∂

k−1−l
t (A(u)),

Bk−1(u) := ∂k−1
t h+ T (Ek−1(u))− P1T (Ek−1(u)) (0, ·).

Notice that Bk−1(u) does not depend on v and Bk−1(u) ∈ Ĉ1+α,1; Ek−1 = 0 when k = 1, 2.

Also A1(u) is a differential operator whose coefficients are in Ĉα,1 when k > 1 and in Ĉ1+α,0

when k = 1. Fix t in the interior of P and V ∈ R2n−2 \ {0}. Consider t′ = t + λV ∈ P

where λ ∈ R∗. We first need to prove that v(·,t′)−v(·,t)
λ

converges as λ → 0. We claim that∣∣∣v(·,t′)−v(·,t)
λ

∣∣∣
1+α

is bounded for λ in a neighborhood of 0. Let

I(t′, t) := TA1(u(·, t′))v(·, t′)− TA1(u(·, t))v(·, t).

Let us consider the case k = 1 first. In this case v = u. We decompose

I(t′, t) = T
{
(∂ζu(·, t′)− ∂ζu(·, t))A(u(·, t′)) + ∂ζu(·, t)(A(u(·, t′))− A(u(·, t)))

}
.

Using A(u(·, t′))− A(u(·, t)) =
∫ 1

s=0
d
ds
{A(su(·, t′) + (1− s)u(·, t))} ds, we obtain

|(A(u(·, t′))− A(u(·, t))|α ≤ C|A|1+α|u(·, t′)− u(·, t)|α.

Thus

(3.13)
∣∣λ−1I(t′, t)

∣∣
1+α

≤ c|A|1+α

∣∣λ−1(u(·, t′)− u(·, t))
∣∣
1+α

,
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for some positive constant c. Here, we have used the fact that |u(·, t)|1+α is bounded in t,
due to u ∈ C1+α,0. From the definition of P1TA1(u)v, we obtain from (3.13)∣∣λ−1{P1TA1(u)u(·, t′)− P1TA1(u)u(·, t)}

∣∣
1+α

≤ c′
∣∣λ−1I(t′, t)

∣∣
1+α

.

We also have |λ−1{B1(·, t′)−B1(·, t)}|1+α ≤ C|h|2+α. Since |A|1+α can be chosen arbitrarily

small, it follows that
∣∣∣u(·,t′)−u(·,t)

λ

∣∣∣
1+α

is bounded for λ in a neighborhood of 0. Thus,

there exist a sequence λν → 0 and a map w(·, t) of class C1+α such that |w(·, t)|1+α is

uniformly bounded and such that for tν := t+ λνV , we have |u(·,tν)−u(·,t)
λν

− w(·, t)|L∞ → 0,

|∂ζu(·,tν)−∂ζu(·,t)
λν

− ∂ζw(·, t)|L∞ → 0 and |∂ζu(·,tν)−∂ζu(·,t)
λν

− ∂ζw(·, t)|L∞ → 0 (see 7.1e. in [16]).

Since T : L∞(D) → L∞(D) is bounded, it follows that w(·, t) satisfies the following equation
w = (I − P1)T

{
∂ζwA(u) + ∂ζu(∂uA(u)w + ∂uA(u)w)

}
+ ∂th.(3.14)

Now, if w′(·, t) ∈ C1+α is another solution of (3.14) then

|w(·, t)− w′(·, t)|1+α ≤ C|A|1+α(|u|α1,0 + |u|1+α,0)|w(·, t)− w′(·, t)|1+α.

Recall that |u|1+α,1 ≤ 1. Thus w = w′. Therefore the solution w is unique, which proves

that u(·,t′)−u(·,t)
λ

converges to w(·, t) = ∂tu(·, t) in |.|1. Next, we want to show that the
map t 7→ w(·, t) is continuous from P into C1. Let tν be a sequence in P converging to
t. Since w(·, tν) is a sequence of bounded maps in C1+α(D), it admits a subsequence, still
denoted by w(·, tν) that converges in |.|C1 to a map w̃ ∈ C1+α. It follows that w̃ satisfies the
equation (3.14) in which w is replaced by w̃. By the uniqueness of the solution of (3.14),
we obtain w(·, t) = w̃ and thus |w(·, tν) − w(·, t)|1 → 0 as |tν − t| → 0. This proves that

w = ∂tu ∈ Ĉ1+α,0(D, P ).
Consider now the case k ≥ 2, which produces some extra terms. The above arguments

can be repeated easily. Now ∂k−1
t u is different from u. Set w1 := ∂ζu∂uA(u), w2 :=

∂ζu∂uA(u). We decompose I(t′, t) in the following way

I(t′, t) = T
{
(∂ζv(·, t′)− ∂ζv(·, t))A(u(·, t′)) + ∂ζv(·, t)(A(u(·, t′))− A(u(·, t)))

}
+ T

{
(w1(·, t′)− w1(·, t))v(·, t′) + (v(·, t′)− v(·, t))w1(·, t′)

}
+ T

{
(w2(·, t′)− w2(·, t))v(·, t′) + (v(·, t′)− v(·, t))w2(·, t′)

}
.

Since k ≥ 2, we have |wl(·, t)|α ≤ C|A|2+α|u|1+α,0. Recall that |u|2+α,1 ≤ 1. We can get

|wl(·, t′)− wl(·, t)|α ≤ C|A|2+α|u(·, t′)− u(·, t)|1+α ≤ C|A|2+α|λ||u|2+α,1.

We obtain

(3.15)
∣∣λ−1I(t′, t)

∣∣
1+α

≤ C|A|2+α

∣∣λ−1(v(·, t′)− v(·, t))
∣∣
1+α

+ C|u|2+α,1.

Again, from the definition of P1TA1(u)v, we obtain from (3.15)∣∣λ−1{P1TA1(u)v(·, t′)− P1TA1(u)v(·, t)}
∣∣
1+α

≤ c′
∣∣λ−1I(t′, t)

∣∣
1+α

.

We also have |λ−1{Bk−1(·, t′)−Bk−1(·, t)}|1+α ≤ C(|h|k+1+α,k + |u|k+α,k−1). Since |A|2+α

can be chosen arbitrarily small, it follows that as before there exist a sequence λν → 0
and a map w(·, t) of class C1+α such that |w(·, t)|1+α is uniformly bounded and such that
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for tν := t + λνV , the sequence v(·,tν)−v(·,t)
λν

− w(·, t), together its first order derivatives,
converges to zero as λν → 0. Also

w = (I − P1)T
{
∂ζwA(u) + ∂ζv∂tA(u) + ∂t(∂ζu∂uA(u))v + ∂ζu∂uA(u)w

}
+ (I − P1)T

{
∂t(∂ζu∂uA(u))v + ∂ζu(∂uA(u))w

}
+ ∂tBk−1(u).

This equation is similar to (3.14) as |A(u)|α ≤ C|A|α and

|∂ζu∂uA(u)|α ≤ C|u|1+α,0|A|1+α|u|α1 ≤ C|A|1+α|

can be chosen arbitrary small. By repeating the rest of arguments from the case k = 1, we
can verify that ∂kt u ∈ Ĉ1+α,0(D, P ).
Step 3. Regularity of u in Ck+1+α,k for finite k or in C∞,j.
Recall by Step 2 that we need to show that u ∈ Ĉ2+α,k−1 when j = k is finite. We

have also proved that u ∈ Cj′+1+α,j′(D, P )∩ Ĉ1+α,k(D, P ). We will only able to improve the
regularity in interior of D. To achieve Step 3 and to demonstrate the differences between
Steps 1 and 2, we will show a stronger result. Assume that the almost complex structure
is of class Ck+α with k > j (this includes the case j = k which is treated in Step 2 for
finite k). Assume that for all l ≤ j, ∂ltu is continuous on D × P and that distributional
derivatives ∂ζ∂

l
tu(·, t) have bounded Lp(D) norms on P for p > 2. Moreover, suppose that

u(·, t) is J-holomorphic on D. Then u ∈ Ck+1+β,j(Dr, P ) for r < 1 and β = min(α, 1−2/p).
The proof is achieved by induction on the order of the derivative in the ζ-variable.
According to (3.9), the first-order derivatives of ∂ltu(·, t) have bounded Lp(D) norms

on P . By Morrey’s inequalities, u ∈ Ĉβ,j(Dr, P ) for any r < 1 (see Lemma 7.16 and
Theorem 7.17 in [8], pp. 162-163). Fix ζ0 ∈ D and set A0 := A(u(ζ0, t)), u = ũ+ ũA0 and
u∗(ζ, t) := ũ(ζ∗, t) with ζ∗ := ζ0 + µζ. Here 0 < µ < 1

2
(1 − |ζ0|) will be determined later.

According to (3.9), we get on D

∂ζu∗ = ∂ζu∗A∗(ζ, t), A∗(0, t) = 0,(3.16)

A∗(ζ, t) = [A(u(ζ0 + µζ, t))− A0][I−A0A]
−1.(3.17)

We emphasize that A∗(ζ, t) is considered as a matrix functions in ζ and t, but not in u∗.
Let χ be a smooth real function with compact support in D1/4. Let v := χu∗. Multiply
(3.16) by χ and rewrite it as

(3.18) ∂ζv − ∂ζvA∗(ζ, t) = ∂ζχu∗ − ∂ζχu∗A∗(ζ, t).

Let χ̃ be a smooth real function with compact support in D such that χ̃ = 1 on D1/4 and
|χ̃|1 < 5. Replacing A∗ by χ̃A∗, we may assume that A∗(·, t) has compact support in D.
Using (3.17), we get for ζ, ζ ′ ∈ D,

|A∗(ζ, t)| ≤ C|A(u(·, t))|βµβ,

|A∗(ζ
′, t)− A∗(ζ, t)| ≤ C|A(u(·, t))|βµβ|ζ ′ − ζ|β.

Therefore

∥A∗∥β,0 ≤ C|A ◦ u|β,0µβ < ϵβ.
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Here ϵβ is the constant in Lemma 2.2 and µ is sufficiently small. Apply T = TD to (3.18).
Since v has compact support we have

(3.19) v − T (∂ζvA∗) = T (∂ζχu∗ − ∂ζχu∗A∗) =: w.

The transpose of the solution v is equal to (I−TAt
∗∂ζ)

−1wt. Since u∗ is in Ĉβ,j(D, P ), then
A∗ and w are in Ĉ1+β,j(D, P ). By Lemma 2.2, v is in Ĉ1+β,j(D, P ). Hence u ∈ Ĉ1+β,j(Dr, P )

for any 0 < r < 1. Assume that we have achieved u ∈ Ĉl+β,k(Dr, P ) for any 0 < r < 1 and

l < k+1− j. Since A∗ has compact support in D, then A∗ ∈ Ĉl+β,k(D, P ). By |A∗|α,0 < ϵα,

(3.19) and Lemma 2.2, we get v ∈ Ĉl+1+β,j(D, P ). This shows that u ∈ Ĉk+1+β,j(Dr, P ) for
any r < 1.

Step 4. Construction of R.
We assume that Ω+ and M are subsets defined by yn > 0 and yn = 0, respectively. Let

e(t, 0) = (a, b′ + ib′′). Since e(t, 0) · ∂z is not tangent to M , then b′ + ib′′ ̸= 0. Recall that
u = Ψ(u). By (3.10), D(t) ∩M is defined by

(3.20) b′′ξ + b′η = F (ξ, η, t), F (ξ, η, t) = Im{P1Φ(u(ξ + iη, t))− Φ(u(ξ + iη, t))}.
Without loss of generality, we may assume that b′ ≥ |b′′|. We already know that F ∈
Ck+1+α,j(Dr, P ). We may also achieve |∂ηF | < b′/2 by assuming |A|j+α < 1/C∗. By the
implicit function theorem, (3.20) has a solution η = h(ξ, t) for |ξ| < r/c and t ∈ P . Now

(∂ξh, ∂th) = (b′ − ∂ηF (ξ, η, t))
−1
(
∂ξF − b′′, ∂tF

)
implies that ∂lth ∈ Ck+1+α−l for all l ≤ j. On Dr/c × P , define

R(ζ, t) := u(ξ + i(η + h(ξ, t)), t).

It follows that R(·, t) sends D+
r/c into D

+(t). Replace R(ζ, t) by R(ζ/c, t). The remaining

assertions can be verified easily. �
We point out that Proposition 3.7 fails if the almost complex structure is merely Hölderian.

Indeed, in Ivashkovich-Pinchuk-Rosay [13], an almost complex structure of class C1/2 is
defined on Ω = D2 × D1/10 ⊂ R4 together with a family of pseudoholomorphic discs

u(., t) : D → Ω of class C1+1/2 such that u(ζ, 0) = (2ζ, 0), and such that for t ̸= 0,
u(0, t) = (0, t) and |∂ζu(0, t)| ≤ A for some A < 2. In particular, the map t 7→ u(., t) ∈ C1

is not continuous at 0, and so u /∈ C1+1/2,0.

It is well-known that via the Fourier transform, the boundedness of derivatives of a
function on all lines parallel to coordinates axes yields some smoothness of the function
in all variables (see Rudin [20], p. 203). To limit the loss of derivatives, we will use the
Fourier transform only on curves. This requires us to bound derivatives of a function on a
larger family of curves.
Let γ be a curve of class Ck in Rn and let f be a function of class Ck on Rn. We have

(3.21) ∂kt f(γ(t)) = ((γ′(t) · ∂)kf)(γ(t)) +
∑

1≤|I|<k

Qk,I(∂
(k+1−|I|)
t γ)(∂If)(γ(t)),

where Qk,I are polynomials, ∂(k) denotes derivatives of order ≤ k, and

v · ∂ = v1∂x1 + · · ·+ vn∂xn .
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For the convenience of the reader, we prove the following elementary result.

Lemma 3.8. Let k be a positive integer and let ϵ > 0.

(i) There exist N vectors vj = (1, v′j) ∈ Rn such that |v′j| < ϵ and

(3.22) ∂I = cI,1(v1 · ∂)k + · · ·+ cI,N(vN · ∂)k, |I| = k.

(ii) If v1, . . . , vN satisfy (3.22), there exists δ > 0 such that if |u− v| < δ, then

(3.23) ∂I = QI,1(u)(u1 · ∂)k + · · ·+QI,N(u)(uN · ∂)k, |I| = k.

Here QI,j are rational functions with QI,j(v) = cI,j. Moreover N depends only on k, n.

Proof. (i). Equivalently, we need to verify (3.22)-(3.23) when ∂ is replaced by ξ ∈ Rn.
It holds for n = 1. Assume that it holds when n is replaced by n − 1. For ξkn, we
take distinct non-zero constants λ1, . . . , λk. Then ξkn is in the linear span of ξk1 , (ξ1 +
λ1ξn)

k, . . . , (ξ1 + λkξn)
k. Let ξjnP (ξ1, . . . , ξn−1) be a monomial of degree k > j. Then by

induction assumption

ξjnP (ξ1, . . . , ξn−1) = ξjn[c1(v1 · ξ)k−j + · · ·+ cl(vl · ξ)k−j],

where vj = (1, v′′j , 0) with |v′′j | < ϵ/2. Then ξin(vl · ξ)k−i are in the linear span of (vl · ξ)k,
(vl · ξ + λ1ξn)

k, . . . , (vl · ξ + λkξn)
k. Note that λj’s can be arbitrarily small. Thus, (i) is

verified.

(ii). For |I| = k we have the following expansions

ξI =
∑

1≤j≤N

cI,j(vj · ξ)k, ξI =
∑

1≤j≤N

cI,j(uj · ξ)k +
∑
|I′|=k

Q̃I,I′(v − u)ξI .

Clearly, Q̃I,I′(0) = 0. Moving the last sum to the left-hand side and inverting I−Q̃I,I′

yields (3.23). �

It is elementary that the smoothness of a function on all lines does not yield the smooth-
ness of the function. However, if the norms of derivatives on lines are uniformly bounded,
we can achieve the smoothness of the function. For the proof of Theorem 1.1, we need
to use derivatives of functions on families of curves. This is the content of the following
proposition (see [23] for a similar statement). Set t′ = (t2, · · · , tn) and t = (t1, t

′).

Proposition 3.9. Let k,N be positive integers. For j = 1, . . . , N , let Rj be C1 diffeomor-
phisms from Ωj ⊂ Rn onto an open subset Ω ⊂ Rn. Assume that Rj(·, t′) ∈ Ck and that
Rj(0) = 0. Suppose that at 0 ∈ Ω

(3.24) ∂I =
∑

1≤j≤N

cI,j(∂t1Rj(0) · ∂)|I|, 1 ≤ |I| ≤ k.

Let f ∈ C0(Ω). Then the following hold:

(i) Let f be of class Ck near 0 ∈ Ω. Then for x = Rj(t
j) near 0

(3.25) ∂If(x) =
∑

1≤l≤m

∑
1≤j≤N

QI,l,j

(
∂
(m−l+1)

t11
R1(t

1), . . . , ∂
(m−l+1)

tN1
RN(t

N)
)
∂l
tj1
f(Rj(t

j)),
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where QI,l,j are rational functions without pole at (∂
(m−l+1)

t11
R1(0), . . . , ∂

(m−l+1)

tN1
RN(0)),

and 1 ≤ m = |I| ≤ k. Moreover (3.25) holds on a domain ω if f ∈ Ck(ω) and
0 ∈ ∂ω ⊂ Bn

ϵ where ϵ is sufficiently small.
(ii) Suppose that Rj are affine, i.e. Rj(t)−Rj(y) = Rj(t−y) wherever they are defined.

Suppose that the L∞
t1

norms of one-dimensional distributions ∂mt1 (f ◦ Rj)(·, t′) are
bounded in t′ for all m ≤ k. Then near 0, ∂If are Lipschitz functions for all |I| < k.

(iii) Let Rj be of class Ck+1 near 0 ∈ Rn and let n < p < ∞. Suppose that the Lp
t1

norms of one-dimensional distributions ∂mt1 (f ◦ Rj)(·, t′) are bounded in t′ for all

m ≤ k. Then near 0, f is of class Ck−n
p .

Proof. (i) follows from (3.21) and (3.23), by hypothesis (3.24).

(ii). Applying dilation and replacing f by χf , we may assume that f has compact
support in ∆n. Set χϵ(x) := ϵ−nχ(ϵ−1x) for a smooth function χ with support in ∆n and∫
χdx = 1. Set fϵ(x) :=

∫
f(y)χϵ(x− y) dy and fϵ,j := fϵ ◦Rj. Changing variables via Rj,

we get

fϵ,j(t) =

∫
f(Rj(t)−Rj(y))χϵ(Rj(y)) detR

′
j(y) dy.

Using Rj(t)− Rj(y) = Rj(t− y), we get |fϵ,j(·, t′)|k < C for C independent of ϵ and t′. In
(3.25), we substitute fϵ for f . Therefore, ∂

Ifϵ are bounded near 0 . We can find a sequence
fϵj such that as ϵj tends to 0, ∂

Ifϵj converges uniformly for |I| < k, and the Lipschitz norms

of ∂Ifϵj are bounded. Since fϵ converges uniformly to f as ϵ→ 0+ then ∂k−1f ∈ Lip loc.

(iii). For such a function f , we define a distribution Tjf by

Tjf(ϕ) := (−1)k
∫
Rn

f ◦Rj(t)∂
k
t1
ϕ(Rj(t)) dt,

where ϕ is a test function supported in ∆n
ϵ with ϵ small. It is clear that defined near 0,

Tjf is a distribution of order (≤) k. Integrating by parts in the t1-variable yields

|Tjf(ϕ)| ≤ C

∫
Rn−1

∥∂kt1 [f ◦Rj](·, t′)∥Lp
t1
∥ϕ ◦Rj(·, t′)∥Lq

t1
dt′

≤ C1

∫
Rn−1

∥ϕ ◦Rj(·, t′)∥Lq
t1
dt′ ≤ C2∥ϕ ◦Rj∥Lq ≤ C3∥ϕ∥Lq .

Here the first and the second last inequalities are obtained from the Hölder inequality and
from suppϕ ⊂ ∆n

ϵ . Hence near 0, Tjf ∈ Lp for p > 1. Next we find a differential operator
Pj,k(∂) of order k such that Pj,k(∂)f = Tjf . In order to find it, we use a smooth function
g to obtain

Tjg(ϕ) =

∫
∂kt1 [g ◦Rj(t)]ϕ(Rj(t)) dt =

∫
(ϕP̃j,k(∂)g) ◦Rj(t) dt

=

∫
[det((R−1

j )′)P̃j,k(∂)g]ϕ dx =: (Pj,k(∂)g)(ϕ).

Since Rj ∈ Ck+1, it is easy to see that

Pj,k(∂) = det((R−1
j )′)P̃j,k(∂) =

∑
|I|≤k

aj,k,I∂
I , aj,k,I ∈ C|I|.
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The last assertion implies that Pj,k(∂) has order k. The definition of Tjf and the identity
Pj,k(∂)g = Tjg imply that as distributions defined near 0, we have Pj,k(∂)f = Tjf .
Note that ∑

|I|=k

aj,k,I(x)∂
I
x =

∑
|I|=k

CI det((R
−1
j )′(x))(∂tj1

Rj(t
j))I∂Ix, CI ̸= 0.

Here tj = R−1
j (x). Combining with (3.24), we get for g ∈ Ck and 1 ≤ |I| ≤ k,

∂Ig =
∑

1≤l≤m

∑
1≤j≤N

bI,j,lPj,l(∂)g, bI,j,l ∈ Cl.

The last assertion, combined with ordPj,l(∂) ≤ l, aj,k,I ∈ C|I| and Pj,l(∂)f ∈ Lp, implies

that near 0, ∂If are in Lp for 1 ≤ |I| ≤ k. Therefore, f ∈ W k,p
loc , and f ∈ Ck−n

p by a Sobolev
embedding theorem (see [11], p. 123). �

4. Cauchy-Green operator on domains with parameter

The following result is certainly classical; see [24], Section 8.1 (pp. 56-61). For the
convenience of the reader, we present details for a parameter version. Recall that P is the
closure of a bounded open set in a Euclidean space and that two points a, b in the interior
of P can be connected by a smooth curve in the interior of length at most C|b− a|.

Lemma 4.1. Let τ be a complex-valued function on D+ × P of class Ck+1+α,0(D+
, P ).

Suppose that for z, z′ ∈ D+ and t ∈ P ,

(4.1) |τ(z′, t)− τ(z, t)| ≥ |z′ − z|/C.

(i) Let f be a continuous function on [−1, 1]× P . For z ∈ D+, define

C0f(z, t) :=
1

2πi

∫ 1

−1

f(s, t)

τ(s, t)− τ(z, t)
ds.

Then |∂kzC0f(z, t)| ≤ Ck|f |L∞/| Im z|k+1, where Ck depends only on |τ |k,0.
(ii) Let f be a function of class Ck+α,0([−1, 1], P ). Then C0f extends continuously to

(D+ ∪ (−1, 1)) × P . Moreover, C0f ∈ Ck+α,0(D+

r , P ) for any r < 1 and satisfies
|C0f |k+α,0 ≤ C|f |k+α,0.

(iii) Let f be a function of class Ck+α,0(D+
, P ). For z ∈ D+, define

S0f(z, t) := − 1

π
lim
ϵ→0

∫
{ζ∈D+ : |τ(ζ,t)−τ(z,t)|>ϵ}

f(ζ, t)

(τ(ζ, t)− τ(z, t))2
dξdη,

T0f(z, t) := − 1

π

∫
D+

f(ζ, t)

τ(ζ, t)− τ(z, t)
dξdη.

Then S0f ∈ Ck+α,0(D+

r , P ) and T0f ∈ Ck+1+α,0(D+

r , P ) for any r < 1 with |S0f |k+α,0+
|T0f |k+1+α,0 ≤ C|f |k+α,0.

Proof. (i). Note that (4.1) implies that |τ(z, t) − τ(s, t)| ≥ Im z/C for −1 ≤ s ≤ 1 and
z ∈ D+. The proof is straightforward by taking derivatives in z, z directly onto the kernel.
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(ii). Let z = x + iy. Let χ be a smooth function with compact support in (−1, 1).
Replacing f(x, t) with χ(x)f(x, t)/∂xτ(x, t), it suffices to get the norm estimate on D+

r ×P
for

C0f(z, t) =
1

2πi

∫
∂D+

f(ζ, t)

τ(ζ, t)− τ(z, t)
dτ(ζ, t)(4.2)

=
1

2πi

∫
∂D+

f(ζ, t)− f(x, t)

τ(ζ, t)− τ(z, t)
dτ(ζ, t) + ϵf(x, t).

Here the differentiation and integration are in ζ, and ϵ = 1 if τ(·, t) preserves the orientation
of D+; otherwise ϵ = −1. From (4.1) and τ ∈ C1,0(D+, P ), we know that ϵ is independent
of t. Let C1f denote the second integral in (4.2). Let ∂j denote a j-th derivative in x, y.
In what follows, the norms | · |j+α,0 for f, τ are on D+, and norms | · |j+α,0 for C0f are on
D+

r with r < 1. These norms will be denoted by the same notation | · |j+α. Since t is fixed,
we suppress it in all expressions. All constants are independent of t.

That C0f extends continuously to D+ × P follows from the continuity of f and∣∣∣∣f(s)− f(x)

τ(s)− τ(z)

∣∣∣∣ ≤ C|f |α|x− s|α−1.

Take (4.2) as the definition of C0. Differentiating it gives

(4.3) ∂C0f(z) =
∂τ(z)

2πi

∫
∂D+

f(ζ)− f(x)

(τ(ζ)− τ(z))2
dτ(ζ).

Using |τ(s)− τ(z)| ≥ (|s− x|+ |y|)/C, we get

|∂C0f(z)| ≤ |τ |1
∫
∂D+

C|f |α,0|s− x|α

|y|2 + |s− x|2
ds ≤ C ′

α|f |α|y|α−1.

By a Hardy-Littlewood type lemma, we obtain |C0f |α,0 ≤ C|f |α,0. For higher derivatives of
C0f , we differentiate (4.2) in the z-variable and transport derivatives to f via integration
by parts. We get for |I| = k

(4.4) ∂IC0f(z) =
∑

|K|=|I|

∂K1τ(z) · · · ∂Klτ(z)

∫
∂D+

fIK(ζ)

τ(ζ)− τ(z)
dτ(ζ).

Here fIK(s) are polynomials in (∂sτ(s))
−1, ∂lsf(s), ∂

l+1
s τ(s) with l ≤ k. As before, we have

the continuity of

1

2πi

∫
∂D+

fIK(ζ)

τ(ζ)− τ(z)
dτ(ζ) =

1

2πi

∫
∂D+

fIK(ζ)− fIK(x)

τ(ζ)− τ(z)
dτ(ζ) + ϵfIK(x).

By differentiating the integral in (4.4) one more time, we get a formula analogous to (4.3).

As in case k = 0, we can verify that the Cα norms of ∂kC0f(·, t) on D+

r are bounded.

(iii). We first show that S0f ∈ Cα,0(D+
, P ). Let −2idξ ∧ dη = A(ζ, t) dτ(ζ, t) ∧ dτ(ζ, t).

Let χ be a smooth function with compact support in D+
r′ ∪ (−r′, r′), where 0 < r < r′ <

1. By replacing f(ζ, t) by χ(ζ)f(ζ, t)A(ζ, t), we may reduce to the case where f(·, t) is

supported in D+

r′ with r < r′ < 1. We may also replace the domain of integration by
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a smooth domain D with D+
r ⊂ D ⊂ D+

r′ . Again, we suppress the parameter t in all
expressions and write

(4.5) S0f(z) =
1

2πi

∫
D

(f(ζ)− f(z)) dτ(ζ) ∧ dτ(ζ)
(τ(ζ)− τ(z))2

− f(z)

2πi

∫
∂D

dτ(ζ)

τ(ζ)− τ(z)
.

On ∂D, write dτ(ζ) = a0(ζ) dτ(ζ). By (ii), we know that the last integral in (4.5) is in

Cα,0(D+

r , P ). Denote the first integral in (4.5) by g̃(z)/(2πi). That g̃ extends continuously
follows from the continuity of f and |f(ζ)− f(z)|/|τ(ζ)− τ(z)|2 ≤ C|ζ − z|α−2. Write

g̃(z2)− g̃(z1) =

∫
D

(f(z1)− f(z2)) dτ(ζ) ∧ dτ(ζ)
(τ(ζ)− τ(z2))(τ(ζ)− τ(z1))

+

∫
D

(f(ζ)− f(z2))(τ(z2)− τ(z1))

(τ(ζ)− τ(z2))2(τ(ζ)− τ(z1))
dτ(ζ) ∧ dτ(ζ)

+

∫
D

(f(ζ)− f(z1))(τ(z2)− τ(z1))

(τ(ζ)− τ(z1))2(τ(ζ)− τ(z2))
dτ(ζ) ∧ dτ(ζ).

The last two integrals can be estimated by a standard argument for Hölder estimates,
bounded in absolute value by Cα∥f∥α,0|z2 − z1|α. The first integral can be rewritten as the
product of f(z1)− f(z2) and I where

I :=
1

τ(z2)− τ(z1)

∫
D

{
dτ(ζ) ∧ dτ(ζ)
τ(ζ)− τ(z2)

− dτ(ζ) ∧ dτ(ζ)
τ(ζ)− τ(z1)

}
= 2πiϵ

τ(z2)− τ(z1)

τ(z1)− τ(z2)
+

1

τ(z1)− τ(z2)

∫
∂D

{
τ(ζ) dτ(ζ)

τ(ζ)− τ(z2)
− τ(ζ) dτ(ζ)

τ(ζ)− τ(z1)

}
.

A derivative of
∫
∂D

τ(ζ) dτ(ζ)
τ(ζ)−τ(z)

is ∂zτ(z)
∫
∂D

dτ(ζ)
τ(ζ)−τ(z)

which, by (ii), is bounded. By the mean-

value-theorem, the last term in I is bounded. This shows that S0f ∈ Cα,0(D+

r , P ).
For higher order derivatives, we transport derivatives to f . Define f∗(τ(z)) := f(z)

and ω(t) := τ(·, t)(D). Let C∗ := C∂ω(t), T∗ := Tω(t) and S∗ := Sω(t). Rewrite (4.5) as
g∗(τ) = ϵS∗f∗. By integrating by parts, we obtain

g∗(τ) =
1

2πi

∫
ω(t)

∂ςf∗(ς)

ς − τ
dς ∧ dς − 1

2πi

∫
∂ω(t)

f∗(ς)

ς − τ
dς.

On ∂ω(t), we write dτ = a(τ, t) dτ with a ∈ Ck+α,0(∂D, P ). Taking derivatives, we get

∂τS∗f∗ = ∂τf∗, ∂τS∗f∗ = S∗∂τf∗ − ∂τC∗af∗.

Using the last formula k times, we get

(∂τ )
kS∗f∗ = S∗∂

k
τ f∗ −

∑
0≤j<k

∂k−j
τ C∗a∂

j
τf∗.
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We return to the z-variable. Let ã(z, t) := a(τ(z, t), t). Let ∂Kz be a derivative in z, z of
order |K| = k. Let ∂(j) denote derivatives of orders ≤ j. Then

∂Kz S0f(z) = p1
(
∂(k)z τ

)
·
(
∂(k)τ S∗f∗, ∂

(k)
τ f∗

)
◦ τ(4.6)

=
∑

0≤j≤k

p2j
(
∂(k)z τ

)
·
(
S∗∂

(k)
τ f∗, ∂

(k−j)
τ C∗(a∂

(j)
τ f∗), ∂

(k)
τ f∗

)
◦ τ

=
∑

0≤j≤k

q1j,k ·
(
S0q

2
k∂

(k)
z f, ∂(k−j)

τ C0(ãq
3
j∂

(j)
τ f), ∂(k)τ f

)
.

Here the integral operator S0 is over the domain D, and C0 is over ∂D. pij are vectors of

polynomials, and q1j,k, q
2
k, q

3
j are matrices of polynomials in (det τ ′)−1 and ∂

(j)
z τ . It follows

from the assertion for k = 0 and (ii) that S0f ∈ Ck+α,0(D+
, P ).

Note that ∂τT∗ = S∗ and ∂τT∗ = I. Thus it follows from (ii), the product rule, and the

chain rule as used in (4.6), that T0f ∈ Ck+1+α,0(D+

r , P ). �

5. Proof of the main theorem

Let ∆ := [−1, 1] and ∆r := [−r, r]. Let ∆n
r ,∆

2n−1
r ,∆2n

r be the corresponding cubes in
the x-subspace, hyperplane yn = 0, and R2n, respectively.
In this section, we state and prove a more precise version of Theorem 1.1.

Theorem 5.1. Let k ≥ 3 be an integer. Let Ω1,Ω2,M, α be as in Theorem 1.1 with
M ∈ Ck+1+α. For l = 1, 2, let J l be an almost complex structure of class Ck+α(Ωl ∪M) on
Ωl ∪M . Suppose that at each point p ∈ M there is a tangent vector vp ∈ TpM such that
J1
pvp, J

2
pvp are in the same connected component of TpR

2n \ TpM . Let f be a continuous

function on Ω1∪M ∪Ω2 such that (∂xj
+ iJ l∂xj

)f and (∂yj + iJ
l∂yj)f , defined on Ωl, extend

to functions in Ck(Ωl∪M) for l = 1, 2 and 1 ≤ j ≤ n. Then f ∈ Ck−2(Ω1∪M)∩Ck−2+β(Ω1)
for any β < 1.

Notice that no integrability condition is assumed. A by-product of our proof is an interior
regularity of f with f ∈ Cβ(Ω1) for any β < 1 when k = 2; of course, the assumptions
on f, J2, M and Ω2 are not needed in order to obtain the regularity of f on Ω1. The
result might not be sharp. Indeed, when the structures are integrable and k ≥ 1, the
Newlander-Nirenberg theorem [25] yields f ∈ Ck+β(Ω1) for any β < 1.

We first describe the main ingredients of the proof.
Step 1. Let Ω+ = Ω1 and Ω− = Ω2. We first assume the interior regularity that f is

C1 on Ω+ ∪ Ω−. We will show that the Fourier transforms of f on lines L in M decay
in the ξ-variable. To use the differential equations for f , lines L need to be transversal
to the complex tangent vectors of M of both structures. Two almost complex structures
yield decay of the Fourier transform at opposite rays. This is the only place we need both
structures. According to Proposition 3.9, this gives the smoothness of f on M .

Step 2. In order to obtain the smoothness of f on each side of M (up to the boundary)
via the one-sided almost complex structure, we attach a family of pseudoholomorphic discs
to M by using Proposition 3.7. Such a disc will have regularity as good as the structure
provides. This is achieved by extending the structure to a neighborhood of M . Using
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Lemma 4.1, we prove that the regularity of f on M yields uniform bounds of pointwise
derivatives of f along the discs up to their boundaries in M .

Step 3. After obtaining the smoothness of f on families of discs in Ω+ ∪ M , we ob-
tain the interior regularity of f , including the C1 regularity, by Proposition 3.9. Using
Proposition 3.9 again, we conclude the smoothness of f on Ω+ ∪M .

We now carry out details. We need a preparation for Step 1.
Step 0. Match approximate J-holomorphic half-discs in M .
We fix a finite integer k ≥ 3. We may assume that M = ∆2n−1 × 0, Ω+ = Dn ∩{yn > 0}

and Ω− = Dn ∩{yn < 0}. By assumption, there is a vector v0 ∈ T0M such that the vectors
J1
0v0, J

2
0v0 are transversal to T0M and are in Ω+. Thus the line segments tJ1

0v0, tJ
2
0v0

(0 < t ≤ 1) are transversal to M and are contained in Ω+, by shrinking v0 if necessary.
Here we have identified R2n with TpR

2n by sending v to the tangent vector of p + tv;
consequently, J l

p acts on R2n linearly.
Let ϵ > 0 be sufficiently small such that if p ∈ M and v ∈ TpM satisfy |p| < ϵ and

|v − v0| < ϵ. Then J1
pv and J2

pv are still in the same component of TpR
2n \ TpM . By

transversality, p+ tJ1
pv and p+ tJ2

pv are in Ω+ for 0 < t ≤ 1. Define the line segment

L = L(v, p) := {p+ tv : − 2 < t < 2} ⊂M.

Let e1, . . . , e2n−1 be the standard basis of R2n−1. We find an affine coordinate map ϕ on
R2n such that ϕ(p) = 0, ϕ(p + v) = e1, and ϕ(p + vj) = ej. We may also assume that
the norms of ϕ and ϕ−1 have an upper bound independent of p and v. In what follows, all
constants are independent of p and v. Proposition 3.9 (ii) will be used for this family of ϕ
(with p = 0) depending on parameter v with v0 to be chosen.
We want to apply Lemma 3.6 to L(v, p). Here v and p are considered as parameters

and we suppress them in all expressions. For the above L(p, v), we attach an approximate
J-holomorphic curve u1 of class Ck+1+α such that

du1(∂z) = V 1(z) ·X1(u1(z)) + F 1(z) ·X1(u1(z)),(5.1)

|F 1(z)| ≤ C|y|k+α, (x, y) ∈ Q := (−1, 1)× (0, ϵ).

We have an analogous u2 and Ω− ∪M . We also require

u1(x, 0) = p+ xv = u2(x, 0) on [−1, 1].

We know that u1(x, 0) is contained in M ⊂ Ω
+ ∩ Ω

−
for |x| < 1. When p = 0 and v = v0,

we have du1(0)(∂x) = v0 and du1(0)(∂y) = J1
0du

1(0)(∂x) = J1
0v0 is contained in Ω+, −J2

0v0
is contained in Ω− and both are transversal to M . Thus,

u1(x, y) ∈ Ω+, (x, y) ∈ Q; u2(x, y) ∈ Ω−, (x, y) ∈ −Q.(5.2)

The above hold for v = v0 and p = 0. Since the derivatives of u are continuous in p and v,
the above hold for |p| < ϵ and |v− v′| < ϵ. And for a constant C > 1 independent of p and
v, we have

dist(ul(x, y),M) ≥ |y|/C, (x, y) ∈ (−1)l−1Q.(5.3)
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Step 1. Uniform bound of Fourier transform of f on transversal lines L in M .
In Steps 1 and 2, we will assume that f is C1 on Ω+ ∪ Ω−. We will verify this interior

regularity in the final step.
Fix k. Recall from Step 0 that M is contained in R2n−1. Let v0, ϵ be as in Step 0. By

Lemma 3.8, there exist N vectors vj in R2n−1 such that

(5.4) (∂x, ∂y′)
I =

∑
1≤j≤N

cI,j(vj · (∂x, ∂y′))| I |, 1 ≤ |I| ≤ k.

Here |vj − v0| < ϵ. Recall that the line segment L is {p + tvj : − 1 ≤ t ≤ 1} with p ∈ M
such that |p| < ϵ. Fix such a segment L and denote its tangent vector vj by v.

Note that when ϵ is sufficiently small, L has length > |v0|/2. Let χ0 be a cutoff function
on M with compact support in ∆2n

|v0|/(4n) ∩M . Then χ0|L has compact support. We will
show that the Fourier transform of χ0f on L satisfies

(5.5) (1 + |ξ|)k−1+α−β
∣∣∣χ̂0f |L(ξ)

∣∣∣ < Cβ

for any β > 0, where Cβ will be independent of p, v1, . . . , vd. We will verify (5.5) for
ξ = −|ξ|v, using X1

j f = g1j on Ω+ with g1j ∈ Ck(Ω+ ∪M). For ξ = |ξ|v, we use X2
j f = g2j

on Ω− with g2j ∈ Ck(Ω− ∪M).

We now use approximate J-holomorphic curves u1, u2 defined in Step 0. We drop the
superscript in u1, g1j , a

1
jk, etc. Applying Lemma 2.3, we extend χ0 ◦ u(x, 0) to χ ∈ C∞(Q)

which has compact support in each (−1, 1) × {y}. Moreover, |∂zχ(x, y)| ≤ C|y|k+α. For
brevity, denote f ◦ u and gj ◦ u by f and gj. Combining with (5.1), we get on Q

∂yf(x, y) = i∂xf(x, y)− 2iV (x, y) · g(u(x, y))− 2iF (x, y) ·X(u)f,(5.6)

∂yχ(x, y) = i∂xχ(x, y) + E(x, y).

Moreover (|E|+ |F |)(x, y) ≤ C|y|k+α, and V,E, F are in Ck+α(Q), and g is in Ck(Q).
In what follows, as required by (5.5) constants do not depend on L, p, vj. By (5.2),

u(x, y) is in Ω+ for |x| < 1, 0 < y < ϵ. Define for y ≥ 0

λ(ξ, y) :=

∫
R

(χf)(x, y)e−i(x+iy)ξ dx.

Notice that

χ̂f |L(ξ) ≡ λ(ξ, 0) = λ(ξ, η)−
∫ η

0

∂yλ(ξ, y) dy.

By (5.6), we obtain

∂yλ(ξ, y) =

∫
R

i∂x[(χf)(x, y)e
−i(x+iy)ξ] dx

− 2i

∫
R

(g(u) · V χ)(x, y)e−i(x+iy)ξ dx+

∫
R

(f(u)E)(x, y)e−i(x+iy)ξ dx

− 2i

∫
R

χF (x, y) · (Xf)(u(x, y))e−i(x+iy)ξ dx.
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By integrating by parts, the first integral is zero. Since g(u(x, y)), V (x, y) ∈ Ck and yξ ≤ 0,
the second one, via integrating by parts k times, is bounded by C(1 + |ξ|)−k. The third
one is bounded by C|E(x, y))| ≤ Cyk+α.
We now estimate the last integral. This amounts to controlling the blow-up of derivatives

of f at u(x, y), for which we apply Proposition 3.7 to a domain of fixed size. By (5.3), Ω+

contains Dn
y/C(u(x, y)). Let ŵ = ψ(w) := u(x, y) + yw/C with w ∈ Cn. So ψ−1 transforms

J,Xl into Ĵ , X̂l = C−1ydψ−1Xl. On Dn, we have

X̂l =
∑

1≤s≤n

(bls ◦ ψ∂ŵs
+ als ◦ ψ∂ŵs).

Let A′ := (als ◦ ψ) and B′ =: (bls ◦ ψ). It is easy to see that on Dn, inf
∣∣∣B′ A′

A
′
B

′

∣∣∣ ≥ 1/C and

|(A′, B′)|k+α ≤ C for some constant independent of v and p. Fix 1 ≤ m ≤ 2n and let

(ŵ1, . . . , ŵ2n) be the standard coordinates of R2n. Applying Proposition 3.7 to {X̂j}, we
get a Ĵ-holomorphic curve û : Dr → Dn satisfying û(0) = 0 and dû(0)(∂ζ) = ∂ŵ′

m
− iĴ0∂ŵ′

m
.

Here r > 0 is a constant independent of y, and |∂jû| < C for j ≤ k + 1. Then the disc
ũ(ζ) := ψ ◦ û(Cζ/y) is J-holomorphic. We have ũ : Dy/c → Ω+

1 := ψ(Ω+), ũ(0) = u(x, y),
and

dũ(0)(∂ζ) = ∂w′
m
− iJũ(0)∂w′

m
.

So dũ(0)(∂ζ) = ∂w′
m
+ iJũ(0)∂w′

m
. A direct computation shows that the first and second

order derivatives of ũ are bounded by C and C/y, respectively. It follows that dũ(∂ζ) =

Ṽ (ζ) ·X(ũ(ζ)) and the first-order derivative of Ṽ (ξ, η) is bounded by C/η. Let gj := Xjf .
We obtain

∂ζ(f(ũ(ζ))) = g(ũ(ζ)) · Ṽ (ζ).

By the Cauchy-Green identity, we have

f(ũ(ζ)) =
1

2πi

∫
|ζ∗|=y/c

f(ũ(ζ∗))

ζ∗ − ζ
dζ∗ +

1

π

∫
|ζ∗|<y/c

g(ũ(ζ∗)) · Ṽ (ζ∗)

ζ∗ − ζ
dξ∗dη∗.

At ζ = 0, the first-order derivatives of the first integral are bounded by C/y. Write
g(ũ(ζ)) · Ṽ (ζ) as h1(ζ) + h2(ζ). Here C1 norms of h1, h2 are bounded by C/y, h1(ζ) = 0
on |ζ| < y/(4c), and h0(ζ) = 0 on |ζ| > y/(2c). The first-order derivatives of the integral
involving h1 are bounded by C at ζ = 0. After applying a translation ζ ′ = ζ∗ − ζ, the
integral involving h0 has bounded derivatives at z = 0 too. We obtain

2|(∂w′
m
f)(ũ(0))| = |∂z(f(ũ))(0) + ∂z(f(ũ))(0)| ≤ C/y.

Thus,

|∂yλ(ξ, y)| ≤ C
(
yk−1+α + (1 + |ξ|)−k

)
.

We also have for ηξ ≤ 0

|λ(ξ, η)| ≤ Ceηξ ≤ CL|ηξ|−L.
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We may assume that ξ ≤ −1. For 0 < α′ < α, choose η = 1/(C|ξ|1−ϵ) with ϵ > 0
sufficiently small. Finally, λ(ξ, 0) = λ(ξ, η)−

∫ η

0
∂yλ(ξ, y) dy satisfies

|λ(ξ, 0)| ≤ CL(C
−1|ξ|ϵ)−L +

C

k + α
ηk+α + C(1 + |ξ|)−k 1

C|ξ|1−ϵ
(5.7)

≤ Cα′(1 + |ξ|)−(k+α′)

for ξ ≤ 0. Reasoning with X2
j f = g2j for yn ≤ 0 and u2, we get (5.7) for ξ ≥ 0 and hence

for −∞ < ξ <∞.
By the Fourier inversion formula,

χf(p+ xv) =
1

2π

∫
R

λ(ξ, 0)eiξx dξ,

∂k−1
x (χf(p+ xv)) =

1

2π

∫
R

λ(ξ, 0)(iξ)k−1eiξx dξ.(5.8)

Using (5.7), we obtain χf(p + xv) ∈ Ck−1. Let 0 < α′′ < α′ < α. Note that |eix2 − eix1 | ≤
2|x2 − x1|α

′′
for all real numbers x1, x2. By (5.7) and (5.8) again, we obtain

|∂k−1
x (χf)(p+ x2v)− ∂k−1

x (χf)(p+ x1v)| ≤ Cα′

∫
R

|x2 − x1|α
′′|ξ|α′′

(1 + |ξ|)1+α′ dξ.

We have |(χf(p+ ·v))|k−1+α′′ < Cα′′ . Therefore,

|χ0f |L|k−1+α′′ < Cα′′ ,

where L is any line which is tangent to one of v1, . . . , vN and which passes through p ∈M
near the origin. For such a line L, we can find an affine diffeomorphism R with R(0) =
0 ∈ M , sending ∆2n−1 into M , such that R(·, t) are lines parallel to L for t ∈ Dn−1. By
Proposition 3.9 (ii) and hypothesis (5.4), we get ∂k−2(χ0f) ∈ Lip (M).

Step 2. Uniform bound of derivatives of f on transversal J-holomorphic curves.
By Lemma 3.8, there exist N vectors vj ∈ R2n with |vj| < 1 such that

(5.9) (∂x, ∂y)
I =

∑
1≤j≤N

cI,j
(
vj · (∂x, ∂y)

)|I|
, 1 ≤ |I| ≤ k.

By perturbing vj, we may assume that Jp(vj · (∂x, ∂y)) are not tangent to M at p = 0 and
hence in a neighborhood of 0 in M .

We are given n vector fieldsX1, · · · , Xn defined on Ω+∪M . Recall thatM is contained in
yn = 0 and Ω+ is contained in yn > 0. Applying Borel theorem (Lemma 2.3) via restriction
and then extension, we may assume that X1, . . . , Xn define an almost complex structure
on a neighborhood of M . We emphasize that even if we start with an integrable almost
complex structure, the resulting almost complex structure may not be integrable. We now

apply Proposition 3.7 with the parameter set P = Dn−1

r0
. We find diffeomorphisms uj, Rj

of class Ck+1+α,k, which maps Dr0 × Dn−1
r0

into Ω and such that

(5.10) duj(0, t)(∂ξ) = vj · (∂x, ∂y).
Moreover, Dj,r(t) := uj(Dr, t) = Rj(ωj,r(t), t) satisfy

Dr/c1 ⊂ ωj,r(t) ⊂ Dc1r.
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Also Rj(0) = 0, uj(0) = 0, and

−2i duj(·, t)(∂ζ) = J0(vj · (∂x, ∂y))− i(vj · (∂x, ∂y)).
We choose r < r0 sufficiently small so that various compositions in uj, Rj are well-defined.
Also ω+

j,r(t) := ωj,r(t) ∩ {y > 0} satisfies Rj(ω
+
j,r(t), t) = D+

j,r(t) := Dj,r(t) ∩ Ω+. Write

(D̃+
j,r(t), t) = u−1

j (D+
j,r(t)). According to the Cauchy-Green formula, we have

f(uj(z̃, t)) =
1

2πi

∫
∂D̃+

j,r(t)

f(uj(ζ̃ , t))

ζ̃ − z̃
dζ̃ − 1

2πi

∫
D̃+

j,r(t)

∂
ζ̃
f(uj(ζ̃ , t))

ζ̃ − z̃
dζ̃ ∧ dζ̃.

Set (z̃, t) = u−1
j ◦ Rj(z, t) = (τj(z, t), t). By duj(∂ζ) = V (ζ) · X(uj(ζ)) and Xjf = gj, we

get ∂ζf(uj) = V · g(uj) and

ϵf(Rj(z, t)) =
1

2πi

∫
ζ∈∂ω+

j,r(t)

f(Rj(ζ, t))

τj(ζ, t)− τj(z, t)
dτj(ζ, t)

− 1

2πi

∫
ω+
j,r(t)

g(Rj(ζ, t)) · V (τj(ζ, t))

τj(ζ, t)− τj(z, t)
dτj(ζ, t) ∧ dτj(ζ, t).

Here ϵ = 1 if τj(·, t) is orientation-preserving and otherwise ϵ = −1. Notice that ϵ is
independent of t. Recall that Rj(·, t) sends [−r/c, r/c] into ∂D+

j,r(t)∩M . Since u ∈ Ck+1+α,k,

it is easy to see that V (τj(ζ, t)) are in Ck+α,0. Applying Lemma 4.1 (ii), ∂k−2
ξ,η (f(Rj)) are

continuous on ∆r/c∗ × [0, r/c∗)×Dn−1
r/c∗

. And on it, |f(Rj)|k−2+β,0 < Cβ for any β < 1, where

Dn−1
r/c∗

is the parameter space.

Step 3. Smoothness of f via families of J-holomorphic curves.
In this step, we will first remove the assumption stated at the beginning of Step 1 that f

is C1 on Ωl. We also address the comment made after Theorem 5.1 on the interior regularity
of f . Let J = J l ∈ Ck+α and Ω = Ωl. Here we again need k ≥ 3.
Let vj satisfy (5.9). According to Proposition 3.7, we find a Ck+1+α,k diffeomorphism

uj defined in neighborhood of 0 ∈ Ω such that ζ 7→ uj(ζ, t) is J-holomorphic for fixed
t ∈ Dn−1

ϵ and uj(0) = 0, duj(0)(∂ξ) = vj. Drop the subscript j in uj. Then u
−1 defines a Ck

coordinate system in a neighborhood of the origin, and u−1 transforms J into Ĵ . It follows
that Dϵ × {t} are Ĵ-holomorphic curves for |t| < ϵ and ϵ small enough. Thus we can take

X̂1 = a(ζ, t)∂ζ + b(ζ, t)∂ζ with a, b ∈ Ck+α,k and t being the parameter. Now f̂ := f ◦ u
satisfies X̂1f̂ = ĝ1 ∈ Ck. Here X̂1f̂ = ĝ1 holds in the sense of distributions. We want to
show that when restricted to Dϵ × {t}, X̂1f̂ = ĝ1 still holds as distributions. To verify it,
we fix a test function ϕ on Dϵ and take a sequence of test functions ϕν in Cn−1 such that∫
Cn−1 ϕν = 1 and suppϕν ⊂ {t}+Dn−1

1/ν . Note that the formal adjoint X̂∗
1 does not contain

derivatives in the t-variable and satisfies∫
Cn

ĝ1ϕϕν =

∫
Cn

f̂ X̂∗
1 (ϕϕν) =

∫
Cn

f̂ϕνX̂
∗
1 (ϕ).

Since all functions in the integrands are continuous, as ν tends to ∞ we obtain∫
C

ĝ1(·, t)ϕ =

∫
C

f̂(·, t)X̂∗
1 (ϕ).
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Thus we have proved that in the sense of distributions X̂1f̂ = ĝ1 ∈ Ck ⊂ Ck−1+β for any
β < 1. The coefficients of X̂1 are in Ck+α,k. Reasoning as at the end of Step 2 by using
Lemma 4.1 (i) and (iii), we obtain f ◦ uj ∈ Ck+β,0 for any β < 1. (Note that this part of
Step 2 does not use the assumption that f ∈ C1.) Now f ◦ uj ∈ Ck−1,0 with k − 1 ≥ 1,
uj ∈ Ck and Proposition 3.9 (iii) implies that f ∈ Ck−2+β for all β < 1. In particular, we
get f ∈ C1 on Ω1 ∪ Ω2 for k ≥ 3, which is used in Steps 1 and 2.

We now finish the proof of the theorem. By the end of Step 2, we know that when
r is sufficiently small, ∂k−2

ξ,η (f ◦ Rj(ξ + iη, t)) are continuous on Dn
r ∩ {η ≥ 0}. Assume

that k > 2. We also know that the Ck diffeomorphisms Rj, uj satisfy uj(0) = Rj(0) =

0 ∈ M , Rj(ωj,r(t), t) = uj(Dr, t) and Rj(ωj,r(t) ∩ {η ≥ 0}, t) = uj(Dr, t) ∩ Ω
+
. Thus

(∂k−2
ξ (f ◦ uj)) ◦ u−1

j are continuous on Dn
r ∩ Ω

+
. Since duj(0, t)(∂ξ) = vj · (∂x, ∂y), in view

of (5.9) we can apply Proposition 3.9 to the family of diffeomorphisms uj(ξ + iη, t) by
treating (η, t) as parameters. Since f ∈ Ck−2(Ω+), using Proposition 3.9 (i) we express ∂If
on Ω+∩∆2n

r via functions (∂lξ(f ◦uj))◦u−1
j for 1 ≤ |I| ≤ k−2. The latter are continuous on

Ω
+ ∩Dn

r . We have proved that ∂If(x) extends continuously to Ω
+ ∩∆2n

r for all |I| ≤ k− 2
and k > 2. Therefore, f ∈ Ck−2(Ω+ ∪M) by M ∈ Ck−2. The proof of Theorem 5.1 is
complete.

6. One-dimensional Riemann mapping for structures with parameter

Throughout this section, Ω is a bounded open set in C. We start with the existence of
isothermal coordinates with parameter. Recall that a diffeomorphism φ is said to transform
a vector field X into X̃ if locally dφ(X) = µX̃. Denote by Ĉk+α,j(Ω ∪ γ, P ) the set of

functions which are in Ĉk+α,j(K,P ) for any compact subset K of Ω ∪ γ where γ is an

embedded curve. Set Ck+α,j(Ω ∪ γ, P ) := ∩0≤l≤j Ĉk−l+α,l(Ω ∪ γ, P ) for k ≥ j. Recall that
C∞,j(Ω, P ) = ∩∞

k=1Ck,j(Ω, P ) and set C∞,∞(Ω, P ) := ∩∞
j=1C∞,j(Ω, P ).

Proposition 6.1. Let k, j be integers or ∞ such that j ≤ k and let 0 < α < 1. Let Ω be
a domain in C and P be an open set in an Euclidean space. Let a ∈ Ĉk+α,j(Ω, P ) (resp.
Ck+α,j(Ω, P )) satisfying |a|L∞ < 1. If x ∈ Ω there exist a neighborhood U of x and a map

φ ∈ Ĉk+1+α,j(U, P ) (resp. Ck+1+α,j(U, P )) such that φ(·, t) are diffeomorphisms which map
U onto their images and ∂z + a(z, t)∂z into ∂z.

Proof. Fix x = 0 ∈ Ω. Let φ(z, t) = z − a(0, t)z. Then z 7→ φ(z, t) is invertible and
transforms ∂z + a(z, t)∂z into ∂z + ã(z, t)∂z with ã(0, t) = 0. The problem is local. By
dilation, we may assume that Ω contains D. Let χ be a smooth function on D which has
compact support and equals 1 on D1/2. Applying a dilation and replacing ã by χã = b, we
achieve |b|α,0 < ϵα on D for the ϵα in Lemma 2.2. Set f := −(I+Tb∂z)

−1Tb. On D, we have
f ∈ Ĉk+1+α,j and |f |1,0 ≤ Cα|(I+Tb∂z)−1|1+α,0|b|α,0. With the dilation for ã, |f |1,0 can be
arbitrarily small. Therefore z 7→ z + f(z, t) are indeed diffeomorphisms. Since z + f(z, t)
is annihilated by ∂z + ã∂z, it transforms ∂z + ã(z, t)∂z into ∂z. �

It is important that the above classical result (for the non-parameter case) allows one to
interpret ∂zf+a∂zf = g when a is merely Cα. Let w = φ(z) be a local C1+α diffeomorphism
such that dφ(∂z + a∂z) = µ(w)∂w. Then ∂zf + a∂zf = g holds in the w-coordinates, if
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∂w(f ◦φ−1) = g ◦φ−1(w)/µ(w) holds in the sense of distributions. Recall that in the proof
of Theorem 1.1, there is a loss of derivatives. We now turn to a sharp version for planar
domains. In fact, we will prove a parameter version.

Theorem 6.2. Let k, j be integers or ∞ such that j ≤ k and let 0 < α < 1. Let γ be an
embedded curve in C of class Ck+1+α. Let Ω1,Ω2 be disjoint open subsets of C such that
both ∂Ω1, ∂Ω2 contain γ as a relatively open subset. Assume that al ∈ Ĉk+α,j(Ωl ∪ γ, P )

(resp. Ck+α,j(Ωl∪γ, P )) and satisfies |al|L∞ < 1 on (Ωl∪γ)×P . Let f ∈ Ĉ0,j(Ω1∪γ∪Ω2, P )

and bl ∈ Ĉk+α,j(Ωl ∪ γ, P ) (resp. Ck+α,j(Ωl ∪ γ, P )) be such that

∂zf + al∂zf = bl on Ωl, l = 1, 2.

Then f ∈ Ĉk+1+α,j(Ωl ∪ γ, P ) (resp. Ck+1+α,j(Ωl ∪ γ, P )).

Proof. As in the proof of Theorem 1.1 in Section 5, we may assume that γ is the x-axis
and Ω1 = D+

r ,Ω2 = D−
r . In the following, all functions al, bl, etc. are defined on Ωl for

some r > 0 and we will take smaller values for r for a few times. Applying Lemma 2.3, we
first find a function ϕl ∈ Ĉk+1+α,j with ϕl(·, t) ∈ C2(Ωi ∪ γ) such that ϕl(x, 0, t) = x and
∂zϕl + al∂zϕl = O(|y|k+α). Then ϕl sends ∂z + al∂z into µl(∂z + ãl∂z). Replace f, al by
f ◦ ϕ−1

l , ãj on Ωl. Therefore, we may assume that al(z, t) = O(|y|k+α). Now, define a := al
on Ωl. It follows that a is of class Ĉk+α,j(Ω1 ∪ γ ∪ Ω2, P ). Set X := ∂z + a(z, t)∂z.

Next, we find gl ∈ Ĉk+1+α,j on Ωl such that

Xgl − bl = O(|y|k+α), gl(x, 0) = 0.

Replace f by f − gl on Ωl. Therefore, we may assume that bl(z, t) = O(|y|k+α). Define

b := bl on Ωi. Then b is of class Ĉk+α,j(Ω1 ∪ γ ∪ Ω2, P ).

By Proposition 6.1, there are diffeomorphisms ψ(·, t) with ψ ∈ Ĉk+1+α,j(Dr, P ), which

send X into µ∂z with µ ∈ Ĉk+α,j(Dr, P ). Then ∂z(f ◦ ψ−1) = b ◦ ψ−1/µ. Let h :=

TDr(b ◦ ψ−1/µ) where r is sufficiently small. Then h ∈ Ĉk+1+α,j. Now f ◦ ψ−1 − h is
holomorphic away from ψ(γ), continuous up to the C1 curve ψ(γ). Take a small disc Dr,
independent of t and centered at p ∈ ψ(·, t0)(γ). By the Cauchy formula, we express f(·, t)
on Dr via the Cauchy transform on ∂Dr when t is in a small neighborhood of t0. From
f ∈ Ĉ0,j and the compactness of P , we conclude that f ∈ Ĉk+1+α,j(Dr/2, P ). Recall that f

is replaced by f ◦ ϕ−1
l . Therefore the original f is in Ĉk+1+α,j(Ωl ∪ γ, P ). �

Lemma 6.3. Let Ω ⊂ C be a bounded domain with ∂Ω ∈ C1. Suppose that v ∈ C1(Ω) and
b are continuous functions on Ω. Then v satisfies

(6.1) v + Tb = 0

if and only if it satisfies

∂zv + b = 0,(6.2)

Cv =
1

2πi

∫
∂Ω

v(ζ)

ζ − z
dζ = 0.(6.3)

Here three identities are on Ω. Moreover, (6.3) holds on Ω if and only if v is the boundary
value of a function that is holomorphic on C \ Ω, continuous on C \ Ω, and vanishing at
∞.
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Proof. Applying ∂z to (6.1) gives us (6.2). On Ω, Cv = v − T∂zv. Applying T∂z to
(6.1) and using (6.1) again, we get v − T∂zv = 0. Conversely, if v satisfies (6.2), then
v + Tb = v − T∂zv = Cv. The latter is zero by (6.3). Thus v satisfies (6.1).
It is a standard fact that when Ω is a bounded domain with C1 boundary and v is

continuous on ∂Ω, then Cv(z − tn(z)) − Cv(z + tn(z)) converges to v(z) uniformly on ∂Ω
as t → 0+. Here n is the unit outer normal vector of ∂Ω. Then (6.3) implies that Cv is
continuous on C \ Ω and agrees with v on ∂Ω. That Cv vanishes at ∞ is trivial. The
converse follows from the Cauchy formula. �
Now, we prove a version of Theorem 1.2 with parameter.

Theorem 6.4. Let k, j be integers or ∞ and let 0 < α < 1. Let Ω be a bounded domain
in C with ∂Ω ∈ Ck+1+α. Let a ∈ Ĉk+α,j(Ω, P ), b ∈ Ĉk+1+α,j(Ω, P ) be (scalar) functions
satisfying ∥a∥α,0 < ϵα. Then

(6.4) v(·, t) + TΩ(a(·, t)∂zv(·, t)) = b(·, t)

has a unique solution v(., t) with v ∈ Ĉk+α+1,j(Ω, P ). Consequently,

I+Ta∂z : Ĉk′+1+α,j′(Ω, P ) → Ĉk′+1+α,j′(Ω, P )

has a bounded inverse if k′ ≤ k, j′ ≤ j and k, j are integers.

Proof. By Lemma 2.2, there exists a solution v ∈ C1+α,0 to (6.4). The proposition is
verified for k = 0. If k ≥ 1, the assertion that v ∈ Ck+1+α,0 follows from Theorem 6.2
and Lemma 6.3. The last assertion in the proposition follows from TΩ(Ĉk+α,0(Ω, P )) ⊆
Ĉk+1+α,0(Ω, P ) and the open mapping theorem applied to each finite k.
We now apply induction on j. Here we need to use a method from [16], which we have

used in Step 2 of the proof of Proposition 3.7. In fact, the proof is valid without any
essential changes. We briefly point out the arguments. For j = 1, the difference quotient

δλv(·, t) = v(·,t+λV )−v(·,t)
λ

satisfies

δλv(·, t) + T (a(·, t)∂zδλv(·, t)) = δλb(·, t)− T (δλa(·, t)∂zv(·, t′)) = 0.

Here t, t′ are in the interior of P and t′ = t + λV . For fixed t, we can show that δλv(·, t)
converges to ω(·, t) and that ω(·, t) is the unique solution to

ω(·, t) + T (a(·, t)∂zω(·, t)) = δλb(·, t)− T (δλa(·, t)∂zv(·, t)).

The right-hand side is of class Ĉk+1+α,0. Inverting I + T (a(·, t)∂z) in the space Ĉk+α,0 for

each finite k shows that ω is in Ĉk+1+α,0, which is ∂tv satisfying

∂tv + T (a(·, t)∂z∂tv) = ∂tb(·, t)− T (∂ta(·, t)∂zv(·, t)).

The equation is the same as (6.4), except for a different b. Inductively, this shows that v

is in Ĉk+1+α,j(Ω, P ). �
In [3], the Riemann mapping with parameter [3] is proved for simply connected domains

in C. We now extend the result to complex structures. The reader is referred to [3] for
some elementary properties of Ck+1+α,j(Ω, [0, 1]), where Ck+1+α,j(Ω, [0, 1]) is denoted by
Bk+1+α,j(Ω, [0, 1]).
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Theorem 6.5. Let k, j be integers or infinity such that 0 ≤ j ≤ k and let 0 < α < 1.

Let P = [0, 1]. Let Γ(·, t) : D → Ω
t
be embeddings for all t ∈ P , which satisfy Γ ∈

Ck+1+α,j(D, P ). Let J t be a family of complex structures on Ω
t
such that the pull back of J t

by Γ(·, t) defines a family of complex structures on D of class Ck+α,j(D, P ). There exists a
family of mappings R(·, t) from Ωt onto D such that (z, t) 7→ R(Γ(z, t), t) is a mapping of
class Ck+1+α,j(D, P ) and the push-forward of J t via R(·, t) is the standard complex structure
on D for each t ∈ P .

Proof. To localize the problem in the parameter space, we mark three points at, bt, ct on
∂Ωt such that t 7→ (at, bt, bt) is of class Cj. Let R(·, t) be the Riemann mapping sending
at, bt, ct to a, b, c on the unit circle. We want to show that R(·, t) has the desired regularity
for t near a given point t0 ∈ P .

We first want to find a family of mappings S(·, t) from Ω
t
onto D

t
such that the push-

forward of J t agree with the standard complex structure. To see this, we extend J t to a
larger simply connected domain Ω̃t which contains the closure of Ωt. By the uniformization
theorem, there exists a diffeomorphism S(·, t0) of class Ck+1+α which maps Ω̃t0 onto the unit
disc or C such that S(·, t0)∗J t0 is the standard complex structure. By Kellogg’s theorem,
we can find the Riemann mapping sending S(·, t0)(Ωt0) onto the unit disk and match three
marked points. For t close to t0, we can find a family of diffeomorphisms of class Ck+1+α,j,
defined near D, which fixes S(·, t0)(Ωt0) pointwise and maps S(·, t0)(Ωt) onto the unit disc.
Therefore, for regularity near t0, we have simplified the problem to the case where J t0 is
Jst and Ωt are the unit disk. Then J t are defined by vector fields

∂z + a(z, t)∂z

with a(·, t0) = 0. Since a is of class Ck+α,j, then |a|α,0 < ϵα on D × P̃ by choosing a small

neighborhood P̃ of t0. Here, ϵα is the constant in Proposition 6.4. Let f(·, t) := u be the
solution to

u+ TD(a(·, t)∂zu) = −TDa(·, t).
By Proposition 6.4, f is of class Ck+1+α,j. Also |f |1+α,0 ≤ C|a|α < 1. Therefore, F (·, t) : z 7→
z + f(z, t) is a family of diffeomorphisms from D onto Dt

such that F (·, t)∗J t are the
standard complex structure. By the Riemann mapping with parameter [3], we conclude
that there exists a family of Riemann mappings R0(·, t) from Dt onto the unit disc such
that (z, t) 7→ R0(F (z, t), t) is of class Ck+1+α,j(D, P̃ ). Let M(·, t) be the linear fractional
transformation sending

(ãt, b̃t, c̃t) = (R0(F (a
t, t), t), R0(F (b

t, t), t), R0(F (c
t, t), t))

to (a, b, c). Since the mapping t 7→ (ãt, b̃t, c̃t) is of class Cj, it is easy to verify that M is of
class Ck+1+α,j on D× P̃ . Then R(·, t) =M(R0(·, t), t) is of class Ck+1+α,j on D× P̃ . �
From the proof of Lemma 6.3, we also have the following for vector-valued functions.

Lemma 6.6. Let Ω ⊂ C be a bounded domain with ∂Ω ∈ C1. Let v and b be vectors of n
continuous functions on Ω. Suppose that v ∈ C1(Ω).

(i) Let A be an n× n matrix of continuous functions defined on Ω. Then v satisfies

(6.5) v + T (b+ A∂zv) = 0
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if and only if v satisfies (6.3) and

∂zv + b+ A∂zv = 0.(6.6)

(ii) Assume further that v(Ω) is contained in an open subset D of Cn. Let A ∈ C1(D)
be an n× n matrix. Then v satisfies

(6.7) v + T (b+ A(v)∂zv) = 0

if and only if v satisfies (6.3) and

∂zv + b+ A(v)∂zv = 0.(6.8)

Here, the equations (6.3), (6.5)-(6.8) hold on Ω.

We now use the proof of Theorem 6.2 to study a problem in different directions.

Proposition 6.7. Let k be an integer and let 0 < α < 1. Let γ be an embedded curve in
C of class Ck+1+α. Let Ω1,Ω2 be disjoint two open subsets of C such that both ∂Ω1, ∂Ω2

contain γ as a relatively open subset. Assume that al ∈ Ck+α(Ωl ∪ γ) satisfies |al|L∞ < 1
on Ωl ∪ γ. Let E be an embedded C1 curve in D such that D \ E is open in C and has
exactly two connected components ω1, ω2. Assume that u is a continuous map from D into
Ω1 ∪ γ ∪ Ω2 such that u : ωl → Ωl are J-holomorphic with respect to ∂z + al∂z. Then E is
a curve of class Ck+1+α.

Proof. The proof is a slight modification of the proof of Theorem 6.2. The problem is local.
Fix z0 ∈ E and let p = u(z0). We may assume that near p, γ is contained in the real axis
and Ω1,Ω2 are contained in the lower and upper half planes. Applying a local change of
coordinates φl which is of class Ck+1+α on Ωl ∪ γ and fixes γ pointwise, we may assume
that al = O(|y|k+α). Define a := al on Ωl ∪ γ. Then X := ∂z + a∂z is of class Ck+α on
Ω1 ∪ γ ∪ Ω2. Near p ∈ γ, we apply a diffeomorphism ϕ of class Ck+1+α which transforms
X into ∂z. Let g = ϕ ◦ φl ◦ u on ωl ∪ E, which is holomorphic away from E. Since g is
continuous and E is an embedded C1 curve, then g is holomorphic at z0. It is easy to verify
that g is biholomorphic near z0. Consequently, E is of class Ck+1+α near z0. �

However, the above result fails in higher dimensions.

Example 6.8. Let E be an embedded C1 curve connecting i,−i and dividing D into two
components ω1, ω2. Let λ be a C∞ function on D which is positive on ω1 and negative on
ω2. The existence of such a function is trivial, by taking it vanishing to infinity order along
E. We use the standard complex structure on D×C = {Imw < λ(z)} ∪ {Imw = λ(z)} ∪
{Imw > λ(z)}. Let u(z) := (z, 0). Then u : ωl → Ωl are holomorphic, γ = {Imw = λ(z)}
is C∞, u(D) = D× {0}, but E needs not to be C∞.

We would like to mention that our main result fails for harmonic functions. For instance,
we take a continuous function f on [−1, 1] and then extend continuously to ∂D. Extend f
harmonically by solving two Dirichlet problems on D+ and D−. Then f is not C∞ on D+

in
general. One sees a similar result for the Neumann problem. Let Ω be a bounded domain
in C with ∂Ω ∈ C∞. Suppose that f is continuous on ∂Ω and dt is the arc-length element
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on ∂Ω. Then Wf (z) =
1
π

∫
∂Ω
f(t) log |γ(t)− z| dt is harmonic on C \ ∂Ω and continuous on

C. However,

∂n(s)Wf = f(s) +
1

π

∫
∂Ω

f(t)∂s arg(γ(s)− γ(t)) dt,

∂−n(s)Wf = f(s)− 1

π

∫
∂Ω

f(t)∂s arg(γ(s)− γ(t)) dt.

Here n(s) is the unit outer normal vector of ∂Ω. In particular, if f is not smooth, then Wf

cannot be smooth simultaneously on Ω and C \ Ω. It is interesting that if Wf ∈ C1(C),
then f and Wf must be zero.

We conclude the paper by mentioning two open problems. Recall that Theorem 6.2 is
essential to the proof of Theorem 1.2. Both theorems deal with the case where f is a
function. If f is vector-valued, we have the following open problem.

Problem A. Let m ≥ 2 be an integer and let 0 < α < 1. Let Ω be a bounded domain in C
with C∞ boundary. Let a ∈ C∞(Ω) be an m×m matrix with a sufficiently small Cα norm
on Ω. Does I+TΩa∂z : [Ck+α(Ω)]m → [Ck+α(Ω)]m have a bounded inverse for all positive
integer k?

The following boundary regularity problem arises from the proof of Proposition 3.7 on
J-holomorphic curves.

Problem B. Let Ω be a bounded domain in C with C∞ boundary. Let D be a domain in
Cn with n ≥ 1. Let A be an n×n matrix of C∞ functions on D. Suppose that the operator
norm ∥A(w)∥ is less than 1 for each w ∈ D. Let u : Ω → D be a C1 map such that

(6.9) u+ TΩ((∂zu)A(u)) ∈ C∞(Ω).

Is u ∈ C∞(Ω)?
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[7] F. Forstnerič, Admissible boundary values of bounded holomorphic functions in wedges, Trans. Amer.

Math. Soc. 332 (1992), no. 2, 583-593.
[8] D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order. Reprint of the

1998 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2001.
[9] N. Hanges and H. Jacobowitz, A remark on almost complex structures with boundary, Amer. J. Math.

111 (1989), no. 1, 53–64.
[10] C.D. Hill, What is the notion of a complex manifold with a smooth boundary? Algebraic analysis,

Vol. I, 185-201, Academic Press, Boston, MA, 1988.



TWO-SIDED COMPLEX STRUCTURES 36
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