B. Maddah

Queueing Theory (3)

- The $M / M / c / K$ queue

$>$ This is a generalization of $M / M / 1 / K$ to many servers. Specifically, this is a Markovian queue with c servers and $K-c$ waiting spaces (where $K>c$).
$>$ The number of customers in the $M / M / c / K$ system, $L(t)$, is a birth death process with states $0,1,2, \ldots, K$, and

$$
\lambda_{n}=\left\{\begin{array}{ll}
\lambda, & \text { if } n<K \\
0 & \text { if } n \geq K
\end{array} \quad \mu_{n}= \begin{cases}n \mu, & \text { if } n<c \\
c \mu, & \text { if } c \leq n \leq K\end{cases}\right.
$$

$>$ Applying birth-death flow balance equation gives

$$
P_{0}= \begin{cases}\left(\sum_{n=0}^{c-1} \frac{a^{n}}{n!}+\frac{a^{c}\left(1-\rho^{K-c+1}\right)}{c!(1-\rho)}\right)^{-1}, & \text { if } \rho \neq 1 \\ \left(\sum_{n=0}^{c-1} \frac{a^{n}}{n!}+\frac{a^{c}(K-c+1)}{c!}\right)^{-1}, & \text { if } \rho=1\end{cases}
$$

$>$ Then,

$$
P_{n}= \begin{cases}\frac{a^{n}}{n!} P_{0}, & \text { if } n<c \\ \frac{a^{n}}{c!c^{n-c}} P_{0}, & \text { if } c \leq n \leq K\end{cases}
$$

> Moreover,
$L_{q}= \begin{cases}\frac{a^{c} \rho}{c!(1-\rho)^{2}}\left[1-\rho^{K-c+1}-(1-\rho)(K-c+1) \rho^{K-c}\right] P_{0}, & \text { if } \rho \neq 1 \\ \frac{c^{c}}{c!}\left[\frac{(K-c)(K-c+1)}{2}\right] P_{0}, & \text { if } \rho=1\end{cases}$
$>$ The effective arrival rate is $\lambda_{e}=\lambda\left(1-P_{K}\right)$, similar to the $M / M / 1 / K$ case.
$>$ Other measures of performance are also found similar to $M / M / 1 / K, W_{q}=\frac{L_{q}}{\lambda_{e}}, W=W_{q}+\frac{1}{\mu}$, and $L=\lambda_{e} W$.

- Example 8

$>$ How many more operators should Sea Beginnings needs mean delay down while maintaining a "rejection" probability of 1%.
$>$ Consider adding two servers. The resulting $M / M / 2 / 100$ system has $\lambda=\mu=60, a=1$, and $\rho=0.5$.
$>$ Then,

$$
\begin{aligned}
P_{0} & =\left(\sum_{n=0}^{c-1} \frac{a^{n}}{n!}+\frac{a^{c}\left(1-\rho^{K-c+1}\right)}{c!(1-\rho)}\right)^{-1}=\left(1+1+\frac{1-0.5^{99}}{2 \times 0.5}\right)^{-1}=0.333 \\
P_{K} & =\frac{a^{K}}{c!c^{K-c}} P_{0}=\frac{0.333}{2 \times 2^{98}}=0 \\
L_{q} & =\frac{a^{c} \rho}{c!(1-\rho)^{2}}\left[1-\rho^{K-c+1}-(1-\rho)(K-c+1) \rho^{K-c}\right] P_{0} \\
& =\frac{0.5}{2(0.5)^{2}}\left[1-0.5^{99}-0.5 \times 99 \times 0.5^{98}\right](0.333)=0.333 \\
\lambda_{e} & =\lambda\left(1-P_{K}\right)=60 \\
W_{q} & =\frac{L_{q}}{\lambda_{e}}=\frac{0.333}{60} \text { hours }=1 / 3 \mathrm{~min}
\end{aligned}
$$

$>$ But obviously here, there are more lines than needed. In your HW, you will determine the minimum number of operators and lines that achieve the desired service level.

- The $M / M / c / c$ Erlang loss model

$>$ This a special case of $M / M / c / K$ with $K=c$.
$>$ That is, there is no waiting. Incoming customers that find all servers busy leave the system.

$>$ Applying the formulas for $M / M / c / K$ with $K=c$,

$$
P_{n}=\frac{a^{n} / n!}{\sum_{n=0}^{c} \frac{a^{n}}{n!}}, \quad n=0,1,2, \ldots, c
$$

$>$ In particular, Erlang's loss formula is

$$
B(c, a) \equiv P_{c}=\frac{a^{c} / c!}{\sum_{n=0}^{c} \frac{a^{n}}{n!}}
$$

$>$ Note that $B(c, a)=P\{$ all servers are busy $\}$

$$
=P\{\text { an arrival will be rejected }\} .
$$

$>$ Erlang, a Swedish engineer, developed this model for a simple telephone network.
$>$ This is considered the first application of queueing theory.
$>$ An interesting feature of the Erlang model is that the system size distribution, holds for any service time distribution.
$>$ That is, for an $M / G / c / c$ system

$$
P_{n}=\frac{a^{n} / n!}{\sum_{n=0}^{c} \frac{a^{n}}{n!}}, \quad n=0,1,2, \ldots, c
$$

$>$ That is, P_{n} is insensitive to service time variability. It only depends on the mean service time $E[S]$. (More specifically on $a=\lambda E[S])$.

- Example 9

$>$ What is the minimal number of servers needed, in an $M / M / c / c$ Erlang loss system, to handle an offered load $a=\lambda / \mu=2$ Erlangs, with a loss no higher than 2% ?
$>$ Starting with $c=1$, increase c until $B(c, a)<0.02$.

\boldsymbol{c}	$\boldsymbol{B}(\boldsymbol{c}, \mathbf{2})$
1	$2 / 3$
2	$2 / 5$
3	$4 / 19$
4	$2 / 21 \approx 0.095$
5	$4 / 109 \approx 0.095$
6	$4 / 381 \approx 0.01$

$>$ Therefore, 6 servers are needed to achieve the desired service level.

- The $M / M / \infty$ unlimited service model
$>$ This is an $M / M / c$ queue with an infinite number of servers.

$>$ It applies for example to a self-service situation.
$>$ The number of customers in the $M / M / \infty$ system $L(t)$ is a birth-death process with $\lambda_{n}=\lambda$, and $\mu_{n}=n \mu, n=0,1,2, \ldots$
> Applying the birth-death flaw balance equations gives, or equivalently letting $c \rightarrow \infty$, in the Erlang loss model,

$$
P_{n}=\frac{a^{n}}{n!} e^{-a}, \quad n=0,1,2, \ldots,
$$

$>$ That is, the number of busy servers is a Poisson random variable with mean $\mathrm{a}=\lambda / \mu$.
$>$ This Poisson distribution is also insensitive to service times variability. I.e., it holds for the $M / G / \infty$ queue.
$>$ Note that the mean number of busy servers is a.

- Example 10

$>$ Television station KCAD in a large metropolitan area wishes to know the average number of viewers it can expect on a Saturday evening prime-time program. It has found from past surveys that people turning on their television sets on Saturday evening during prime time can be described rather well by a Poisson distribution with a mean of $100,000 /$ hour. There are five major TV stations in the area, and it is believed that a given person chooses among these essentially at random. Surveys have also showed that a person tunes in for an average time of 90 minutes.

This is a $M / G / \infty$ with $\lambda=100,000 / 5=20,000$ persons/hour and $\mu=1 /(3 / 2)=2 / 3$. Then, the mean number of viewers is $a=\lambda / \mu \stackrel{-}{=} 30,000$, with a standard deviation $\sqrt{a}=173.2$.

- Series Queues

$>$ Consider n queueing stations in series, where each station can be modeled as $M / M / c_{i}$, where c_{i} is the number of servers in station $i, i=1,2, \ldots, n$.
$>$ Customers arrive to the system according to a Poisson process with rate λ. All customers are served in series in stations 1 to n.
$>$ Queueing could occur at any station. Assume that there is ample waiting space at all stations.
$>$ The service time at station i, is exponential with rate μ_{i}.

E.g.,

- A manufacturing assembly line,
- Traffic lights,
- Clinic physical examination procedure,
- Shopping at a grocery store.
$>$ This series system is analyzed based on the following fact.
Fact. The output (departure) process from an $M / M /$ с queue is Poisson with the same parameter λ as the arrival process. ${ }^{1}$

[^0]$>$ Then, each station can be analyzed as an independent $M / M / c_{i}$ with arrival rate λ and service rate μ_{i}.

- Example 11.

$>$ Customers arrive to a supermarket at a Poisson rate of 40/hour during peak hours. It takes a customer on the average $3 / 4$ hour to fill his shopping cart, the filling time being exponentially distributed. Upon filling their shopping cart customers move to a check-out line staffed by c cashiers, where they wait in a single line if all cashiers are busy. There is enough space for any number of waiting customers. Check-out time is exponentially distributed with mean 4 min.
$>$ What is the minimum number of cashiers required during peak hours?
$>$ This system can be modeled as two stations in series, with the first station as $M / M / \infty$ with $\lambda_{1}=40$ and $\mu_{1}=4 / 3$ and the second station as $M / M / c$ with $\lambda_{2}=40$ and $\mu_{2}=15$.

In order for the check-out station to be stable,

$$
\rho_{2}=\lambda_{2} /\left(c_{2} \mu_{2}\right)<1 \Rightarrow c>\lambda / \mu=40 / 15=2.667 \Rightarrow c_{\text {min }}=3 .
$$

$>$ Suppose management decided to add one more than the minimum number of cashiers needed.
$>$ What is the mean delay at the checkout line?
$>$ Applying the $M / M / 4$ results, with $a=\lambda / \mu=2.667$, and

$$
\begin{aligned}
\rho=a / 4 & =0.667 . \\
P_{0}^{2} & =\left(\sum_{n=0}^{c_{2}-1} \frac{a_{2}{ }^{n}}{n!}+\frac{a_{2}{ }^{c_{2}}}{c_{2}!\left(1-\rho_{2}\right)}\right)^{-1} \\
& =\left(1+2.667+\frac{2.667^{2}}{2}+\frac{2.667^{3}}{6}+\frac{2.667^{4}}{4!(1-0.667)}\right)^{-1}=0.06 \\
W_{q}^{2} & =\frac{a_{2}^{c_{2}}}{c_{2}!\left(c_{2} \mu_{2}\right)\left(1-\rho_{2}\right)^{2}} P_{0}^{2}=\frac{2.667^{2}}{4!(4 \times 15)(1-0.667)^{2}} 0.06 \\
& =0.019 \text { hours }=1.14 \mathrm{mins}
\end{aligned}
$$

$>$ What is the mean number of people at the check-out line and in the entire supermarket?
$>$ At the checkout line,

$$
L_{2}=L_{q}^{2}+a_{2}=\lambda_{2} W_{q}^{2}+a_{2}=40 \times 0.019+2.667=3.43 .
$$

$>$ At the entire store, the mean number is

$$
L_{1}+L_{2}=\lambda_{1} / \mu_{1}+3.43=40 /(4 / 3)+3.43=33.43 .
$$

$>$ What is the probability that 25 people are in the store and 4 people are at check-out line?
$>$ The required probability is

$$
P_{25}^{1} \times P_{4}^{2}=\left(e^{-a_{1}} \frac{a_{1}^{25}}{25!}\right)\left(\frac{a_{2}^{4}}{4!} P_{0}^{2}\right)=\left(\frac{30^{25}}{25!}\right)\left(\frac{2.667^{4}}{4!} 0.06\right)=0.006 .
$$

- The M/GI/1 queue

$>$ This is a single server-queue with Poisson arrivals with rate λ and general (non-exponential) service times, S_{1}, S_{2}, \ldots, which are iid.
$>$ This can be seen as a generalization of $M / M / 1$ with general service times.
$>$ As in $M / M / 1$, the stability condition is $\rho=\lambda / \mu<1$.
$>$ Because of the non-exponential service times, birth-death analysis cannot be used.
$>$ However, an "imbedded" discrete time MC can be defined as the number in the system at customer departure epochs.
$>$ Solving the discrete time MC leads to the following (Pollaczek-Khintchine) formula for the mean delay

$$
W_{q}(M / G I / 1)=\frac{\lambda E\left[S^{2}\right]}{2(1-\rho)} .
$$

$>$ Other measures of performance can be found from Little's formula, as usual.
$>$ It is useful to write the delay in $M / G I / 1$ as a function of the delay in $M / M / 1$ with the same arrival and service rate.
$>$ It can be shown that

$$
W_{q}(M / G I / 1)=\frac{1+C_{S}^{2}}{2} \frac{\rho^{2}}{\lambda(1-\rho)}=\frac{1+C_{S}^{2}}{2} W_{q}(M / M / 1),
$$

where $C_{S}^{2}=\operatorname{var}[S] /(E[S])^{2}=E\left[S^{2}\right] /(E[S])^{2}-1$, is the squared coefficient of variation of service times.
$>$ This implies that waiting time in $M / G I / 1$ is proportional to service time variability measured in terms of $C s^{2}$.

Note that for exponential service times, $C_{S^{2}}=1$.
$>$ When service time variability is higher (lower) than that of a "similar" $M / M / 1$, the delay is higher (lower) in $M / G I / 1$.
For example, in a $M / G I / l$ with deterministic service times (known as $M / D / 1$), $C_{S^{2}}=0$, and

$$
W_{q}(M / D / 1)=\frac{W_{q}(M / M / 1)}{2}
$$

- Example 12.

$>$ Suppose that failed machines are sent to a repair facility staffed by one repairman according to a Poisson process with rate $6 /$ hour. A machine could fail due to two types of defects. Type 1 failure requires an exponentially distributed repair time with mean 7 minutes, while Type 2 failure requires an exponentially distributed repair time with mean 20 minutes. Suppose that the probability that a failure is of Type 1 is 0.9 (and that of Type 2 is 0.1). In this case, the overall repair time is said to have a hyperexponential distribution.

What is the mean delay at the repair facility?
By conditioning on the type of failure, the first two moments of the repair time, S, are given by

$$
\begin{aligned}
E[S]= & E[S \mid \text { Type } 1] P\{\text { Type } \mathrm{I}\}+E[S \mid \text { Type } 1] P\{\text { Type I }\} \\
& =7 \times 0.9+20 \times 0.1=8.3 \mathrm{~min} . \\
E\left[S^{2}\right] & =E\left[S^{2} \mid \text { Type } 1\right] P\{\text { Type } \mathrm{I}\}+E\left[S^{2} \mid \text { Type } 1\right] P\{\text { Type I }\} \\
& =\left(2 \times 7^{2}\right) \times 0.9+\left(2 \times 20^{2}\right) \times 0.1=168.2 \mathrm{~min}^{2} .
\end{aligned}
$$

$>$ Then, $C_{S}^{2}=E\left[S^{2}\right] /(E[S])^{2}-1=168.2 / 8.3^{2}-1=1.442$.
$>$ The mean delay in a $M / M / 1$ with the same service and arrival rates is found as follows. In this case $1, \lambda=6$ and $\mu=60 / 8.3=7.23$. Then, $\rho=0.83$, and $W_{q}(M / M / 1)=\frac{\rho^{2}}{\lambda(1-\rho)}=\frac{0.83^{2}}{6(1-0.83)}=0.675$ hours.

Finally, the mean delay in the repair facility is

$$
W_{q}(M / G I / 1)=\frac{1+C_{S}^{2}}{2} W_{q}(M / M / 1)=0.824 \text { hours } .
$$

$>$ Waiting time is high here because of high service time variability.
$>$ What is the probability that the repairman is idle?

$$
P\{\text { server is idle }\}=1-\rho=1-0.83=0.17
$$

- A Queuing Cost Model

$>$ In some situations, management has control over queueing systems parameters.
$>$ In the following, we assume that the number of servers c and/or the service rate μ are decision variables.
$>$ Determining "optimal" values for c and μ is done in a way as to minimize expected cost per unit time.
$>$ The cost function has two components:

- Service cost per unit time, SC,
- Waiting cost per unit time, WC.
$>$ The expected service cost per unit time is given by

$$
E[S C]=C_{s} c \mu,
$$

where C_{s} (\$/unit service rate/server/unit time) is the unit service cost.
$>$ In addition, the expected waiting cost is

$$
E[W C]=C_{w} L,
$$

where C_{w} (\$/customer/unit time) is the unit waiting cost.

- Example 13.

$>$ Jobs arrive at machine shop according to a Poisson process at the rate of 80 jobs per week. An automatic machine represents the bottleneck in the shop. It is estimated that a unit increase in the production rate of the machine will cost $\$ 250$ per week. Delayed jobs result in lost business, which is estimated to be $\$ 500$ per job per week.
$>$ Determine the optimum production rate of the automatic machine.
$>$ The automatic machine can be modeled as an $M / M / 1$ queue with $\lambda=80$ and μ being a decision variable. The unit service cost is $C_{s}=\$ 250$ and the unit waiting cost is $C_{w}=\$ 500$.
$>$ The expected weekly cost as a function of μ is given by

$$
E C(\mu)=C_{s} \mu+C_{w} L=C_{s} \mu+C_{w} \frac{\lambda}{\mu-\lambda} .
$$

$>$ The optimal value of μ that minimizes $E C(\mu), \mu^{*}$, is obtained by differentiating $E C(\mu)$ as follows.

$$
\begin{aligned}
& \frac{\partial E C(\mu)}{\partial \mu}=C_{s}-C_{w} \frac{\lambda}{(\mu-\lambda)^{2}} \\
& \frac{\partial E C(\mu)}{\partial \mu}=0 \Rightarrow C_{s}-C_{w} \frac{\lambda}{\left(\mu^{*}-\lambda\right)^{2}}=0 \Rightarrow C_{s}=C_{w} \frac{\lambda}{\left(\mu^{*}-\lambda\right)^{2}} \\
& \Rightarrow\left(\mu^{*}-\lambda\right)^{2}=C_{w} \frac{\lambda}{C_{s}} \Rightarrow \mu^{*}=\lambda \pm \sqrt{C_{w} \frac{\lambda}{C_{s}}}
\end{aligned}
$$

$>$ Since ρ should be <1, i.e., $\mu>\lambda$,

$$
\mu^{*}=\lambda+\sqrt{C_{w} \frac{\lambda}{C_{s}}}
$$

$>$ We also need to check the second-order conditions to confirm that μ^{*} achieves the maximum value of $E C(\mu)$,

$$
\frac{\partial^{2} E C(\mu)}{\partial \mu^{2}}=2 C_{w} \frac{\lambda}{(\mu-\lambda)^{3}}>0
$$

For the automatic machine, Since ρ should be <1,

$$
\mu^{*}=\lambda+\sqrt{C_{w} \frac{\lambda}{C_{s}}}=80+\sqrt{500 \times \frac{80}{250}}=92.65 \text { jobs/week }
$$

$>$ Suppose that models of the machine available in the market have speeds, $80,85,90,95$, and 100 jobs/week. Which model should be chosen?
$>$ The convexity of the cost function implies that models with speeds 90 and 95 are the most efficient. See figure.

$>$ To see whether 90 or 95 , we compute the expected cost for each. We find that $E C(90)=\$ 26,500$, and $E C(95)=\$ 26,417$.
$>$ The model with speed 95 should be chosen.

[^0]: ${ }^{1}$ This fact does not hold for an $M / G / c$ queue with non-exponential service times.

