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Queueing Theory (3) 

   

•   The M/M/c/K queue 

➢ This is a generalization of M/M/1/K to many servers. 

Specifically, this is a Markovian queue with c servers and    

K − c waiting spaces (where K > c).  

➢ The number of customers in the M/M/c/K system, L(t), is a 

birth death process with states 0, 1, 2, …, ,K,  and  
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➢ Applying birth-death flow balance equation gives 
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➢ Then,  
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➢ Moreover,  
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➢ The effective arrival rate is (1 )e KP = − , similar to the 

M/M/1/K case.   

➢ Other measures of performance are also found similar to 

M/M/1/K, 
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•   Example 8 

➢ How many more operators should Sea Beginnings needs 

mean delay down while maintaining a “rejection” 

probability of 1%.   

➢ Consider adding two servers.  The resulting M/M/2/100 

system has  =  =  a = 1, and  = 0.5. 

➢ Then,  
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➢ But obviously here, there are more lines than needed.  In 

your HW, you will determine the minimum number of 

operators and lines that achieve the desired service level. 

 

•   The M/M/c/c Erlang loss model  

➢ This a special case of M/M/c/K with K = c. 

➢ That is, there is no waiting.  Incoming customers that find 

all servers busy leave the system. 
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➢ Applying the formulas for M/M/c/K with K = c,  
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➢ In particular, Erlang’s loss formula is 
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➢ Note that B(c,a) = P{all servers are busy}  

                               = P{an arrival will be rejected} . 

➢ Erlang, a Swedish engineer, developed this model for a 

simple telephone network.  

➢ This is considered the first application of queueing theory. 

➢ An interesting feature of the Erlang model is that the system 

size distribution, holds for any service time distribution.  

➢ That is, for an M/G/c/c system  
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➢ That is, Pn is insensitive to service time variability.  It only 

depends on the mean service time E[S]. (More specifically 

on a =  E[S]).   
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•   Example 9 

➢ What is the minimal number of servers needed, in an 

M/M/c/c  Erlang loss system, to handle an offered load        

a = /µ = 2 Erlangs, with a loss no higher than 2%? 

➢ Starting with c = 1, increase c until B(c, a) < 0.02. 

c B(c, 2) 

1 2/3 

2 2/5 

3 4/19 

4 2/21 ≈ 0.095 

5 4/109  ≈ 0.095 

6 4/381 ≈ 0.01  
 

➢ Therefore, 6 servers are needed to achieve the desired 

service level. 

 

•   The M/M/∞ unlimited service model  

➢ This is an M/M/c queue with an infinite number of servers. 

 

   

 

     

 

➢ It applies for example to a self-service situation.   

➢ The number of customers in the M/M/∞ system L(t) is a 

birth-death process with n = and n = n n =0,1,2, … 

  

  

  

  

:  

  



 6 

➢ Applying the birth-death flaw balance equations gives, or 

equivalently letting c → ∞, in the Erlang loss model, 

, 0,1, 2, ,
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➢ That is, the number of busy servers is a Poisson random 

variable with mean a = /.  

➢ This Poisson distribution is also insensitive to service times 

variability. I.e., it holds for the M/G/∞ queue. 

➢ Note that the mean number of busy servers is a. 

• Example 10 

➢ Television station KCAD in a large metropolitan area 

wishes to know the average number of viewers it can expect 

on a Saturday evening prime-time program.  It has found 

from past surveys that people turning on their television sets 

on Saturday evening during prime time can be described 

rather well by a Poisson distribution with a mean of 

100,000/hour.  There are five major TV stations in the area, 

and it is believed that a given person chooses among these 

essentially at random.  Surveys have also showed that a 

person tunes in for an average time of 90 minutes.   

➢ This is a M/G/∞ with  = 100,000 /5 = 20,000 persons/hour 

and  = 1/(3/2) = 2/3.  Then, the mean number of viewers is 

a = /=   with a standard deviation 173.2a = . 
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•   Series Queues 

➢ Consider n queueing stations in series, where each station 

can be modeled as M/M/ci, where ci is the number of servers 

in station i, i  = 1, 2, …, n . 

➢ Customers arrive to the system according to a Poisson 

process with rate .  All customers are served in series in 

stations 1 to n.   

➢ Queueing could occur at any station.  Assume that there is 

ample waiting space at all stations.  

➢ The service time at station i, is exponential with rate i .  

 

➢ E.g.,  

o A manufacturing assembly line,  

o Traffic lights, 

o Clinic physical examination procedure, 

o Shopping at a grocery store.  

➢ This series system is analyzed based on the following fact.   

   Fact.  The output (departure) process from an M/M/c queue is  

   Poisson with the same parameter  as the arrival process.1 
 

 
1 This fact does not hold for an M/G/c queue with non-exponential service times.   
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➢ Then, each station can be analyzed as an independent 

M/M/ci with arrival rate  and service rate i .  

   

•  Example 11. 

➢ Customers arrive to a supermarket at a Poisson rate of 

40/hour during peak hours.  It takes a customer on the 

average 3/4 hour to fill his shopping cart, the filling time 

being exponentially distributed.  Upon filling their shopping 

cart customers move to a check-out line staffed by c 

cashiers, where they wait in a single line if all cashiers are 

busy.  There is enough space for any number of waiting 

customers.  Check-out time is exponentially distributed with 

mean 4 min.  

➢ What is the minimum number of cashiers required during 

peak hours? 

➢ This system can be modeled as two stations in series, with 

the first station as M/M/∞ with  = 40 and 1 = 4/3 and the 

second station as M/M/c with  = 40 and 2 = 15.   

➢ In order for the check-out station to be stable,  

        = (c2) < 1  c >  = 40/15 = 2.667   cmin = 3 . 

➢ Suppose management decided to add one more than the 

minimum number of cashiers needed.   

➢ What is the mean delay at the checkout line? 
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➢ Applying the M/M/4 results, with a =   = 2.667, and          

 = a/4 = 0.667.   
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➢ What is the mean number of people at the check-out line 

and in the entire supermarket?  

➢ At the checkout line,  

2 2

2 2 2 2 40 0.019 2.667 3.43q qL L a W a= + = + =  + = . 

➢ At the entire store, the mean number is   

1 2 1 1/ 3.43 40/(4/3) 3.43 33.43.L L  + = + = + =  

➢ What is the probability that 25 people are in the store and 4 

people are at check-out line? 

➢ The required probability is    
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•  The M/GI/1 queue  

➢ This is a single server-queue with Poisson arrivals with rate 

 and general (non-exponential) service times, S1, S2, …, 

which are iid.  



 10 

➢ This can be seen as a generalization of M/M/1 with general 

service times. 

➢ As in M/M/1, the stability condition is  =    

➢ Because of the non-exponential service times, birth-death 

analysis cannot be used.  

➢ However, an “imbedded” discrete time MC can be defined 

as the number in the system at customer departure epochs.  

➢ Solving the discrete time MC leads to the following 

(Pollaczek-Khintchine) formula for the mean delay  

2[ ]
( / /1)

2(1 )
q

E S
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−
 . 

➢ Other measures of performance can be found from Little’s 

formula, as usual.  

➢ It is useful to write the delay in M/GI/1 as a function of the 

delay in M/M/1 with the same arrival and service rate.  

➢ It can be shown that  

2 221 1
( / /1) ( / /1)

2 (1 ) 2
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     where 
2 2 2 2var[ ] /( [ ]) [ ] /( [ ]) 1SC S E S E S E S= = − , is the  

     squared coefficient of variation of service times. 

➢ This implies that waiting time in M/GI/1 is proportional to 

service time variability measured in terms of CS
2 . 

➢ Note that for exponential service times, CS
2 = 1. 



 11 

➢ When service time variability is higher (lower) than that of a 

“similar” M/M/1, the delay is higher (lower) in M/GI/1. 

➢ For example, in a M/GI/1 with deterministic service times 

(known as M/D/1), CS
2 = 0, and  

( / /1)
( / /1)

2

q

q

W M M
W M D = . 

•  Example 12. 

➢ Suppose that failed machines are sent to a repair facility 

staffed by one repairman according to a Poisson process 

with rate 6/hour.  A machine could fail due to two types of 

defects.  Type 1 failure requires an exponentially distributed 

repair time with mean 7 minutes, while Type 2 failure 

requires an exponentially distributed repair time with mean 

20 minutes.  Suppose that the probability that a failure is of 

Type 1 is 0.9 (and that of Type 2 is 0.1).  In this case, the 

overall repair time is said to have a hyperexponential 

distribution.   

➢ What is the mean delay at the repair facility? 

➢ By conditioning on the type of failure, the first two 

moments of the repair time, S, are given by  

2 2 2

2 2 2

[ ] [ | Type 1] {Type I} [ | Type 1] {Type I}

        7 0.9 20 0.1 8.3 min.

[ ] [ | Type 1] {Type I} [ | Type 1] {Type I}

          (2 7 ) 0.9 (2 20 ) 0.1 168.2 min .

E S E S P E S P

E S E S P E S P

= +

=  +  =

= +

=   +   =
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➢ Then, CS
2 = E[S2]/(E[S])2 − 1 = 168.2/8.32 − 1 = 1.442.  

➢ The mean delay in a M/M/1 with the same service and 

arrival rates is found as follows. In this case l,  = 6 and      

 = 60/8.3 = 7.23. Then,  = 0.83, and    

2 20.83
( / /1) 0.675 hours.

(1 ) 6(1 0.83)
qW M M



 
= = =

− −
 

➢ Finally, the mean delay in the repair facility is  

21
( / /1) ( / /1) 0.824 hours.

2

S
q q

C
W M GI W M M

+
= =  

➢ Waiting time is high here because of high service time 

variability. 

➢ What is the probability that the repairman is idle? 

P{server is idle} = 1−  = 1−0.83 = 0.17. 

 

•  A Queuing Cost Model 

➢ In some situations, management has control over queueing 

systems parameters.  

➢ In the following, we assume that the number of servers c 

and/or the service rate  are decision variables. 

➢ Determining “optimal” values for c and  is done in a way 

as to minimize expected cost per unit time.  

➢ The cost function has two components: 

o Service cost per unit time, SC, 

o Waiting cost per unit time, WC.    
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➢ The expected service cost per unit time is given by 

[ ] sE SC C c= , 

        where Cs ($/unit service rate/server/unit time) is the unit  

       service cost.  

➢ In addition, the expected waiting cost is  

 [ ] wE WC C L= , 

 where Cw ($/customer/unit time) is the unit waiting cost.     

 

•  Example 13. 

➢ Jobs arrive at machine shop according to a Poisson process 

at the rate of 80 jobs per week.  An automatic machine 

represents the bottleneck in the shop.  It is estimated that a 

unit increase in the production rate of the machine will cost 

$250 per week. Delayed jobs result in lost business, which 

is estimated to be $500 per job per week.  

➢ Determine the optimum production rate of the automatic 

machine.  

➢ The automatic machine can be modeled as an M/M/1 queue 

with  = 80 and  being a decision variable. The unit 

service cost is Cs = $250 and the unit waiting cost is           

Cw = $500.   

➢ The expected weekly cost as a function of  is given by  
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➢ The optimal value of  that minimizes EC(), *,  is 

obtained by differentiating EC() as follows.  
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➢ Since  should be < 1, i.e.,   , 

* .w

s

C
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 = +  

➢ We also need to check the second-order conditions to 

confirm that * achieves the maximum value of EC(),  

2
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➢ For the automatic machine, Since  should be < 1,  

80
* 80 500 92.65 jobs/week

250
w

s

C
C


 = + = +  =  

➢ Suppose that models of the machine available in the market 

have speeds, 80, 85, 90, 95, and 100 jobs/week. Which 

model should be chosen?    
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➢ The convexity of the cost function implies that models with 

speeds 90 and 95 are the most efficient.  See figure.  
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➢ To see whether 90 or 95, we compute the expected cost for 

each.  We find that EC(90) = $26,500, and   

       EC(95) = $26,417.  

➢ The model with speed 95 should be chosen.   

 


