Continuous-Time Markov Chains (2)

- Alternate definition and Properties of a Poisson Process

$>$ A continuous-time stochastic process $\{N(t), t \geq 0\}$ counting the number of events (e.g. arrivals) by time t is said to be a Poisson process with rate $\lambda>0$, if (i) $N(0)=0$.
(ii) $N(t)$ has independent increments. The number of events that occurs in disjoint time intervals are independent.
(iii) The number of events that occur in a time interval of length t is Poisson distributed with mean λt.
$>$ Obviously, since $N(t)$ counts the number of events, then $N(t)$ takes on nonnegative integer values and $N(t) \geq N(s)$ for $t>s$.
$>$ Because a Poisson process is also a pure birth process with birth rates all equal to λ, the inter-event time is exponentially distributed with mean $1 / \lambda$.
$>$ Suppose each event in a Poisson process, $N(t)$, with rate λ can be classified into type I w.p. p and type II w.p. 1-p.
$>$ Then, the number of type I and type II, $N_{1}(t)$ and $N_{2}(t)$ are independent Poisson processes with rates λp and $\lambda(1-p)$.

This is the decomposition property of the Poisson process.

- Example 5

$>$ Suppose cars arrive to a gas station according to a Poisson process with rate 5 per hour.
$>$ What is the probability that 3 cars arrive in an hour?
$>$ Number of cars in an hour, $N(1)$, is Poisson distributed with mean 5. Then,

$$
P\{N(1)=3\}=e^{-5}(5)^{3} / 3!=0.14 .
$$

$>$ What is the probability that 2 cars arrive in 15 minutes?
$>$ Number of cars in an 15 minutes, $N(1 / 4)$, is Poisson distributed with mean 5/4 =. Then,

$$
P\{N(1 / 4)=2\}=e^{-5 / 4}(5 / 4)^{2} / 2!=0.224
$$

$>$ What is the expected time before that the third car in an hour arrives?
$>$ Inter-arrival times are exponential with mean $1 / 5$ hours. Then, with the memoryless property, the expected time till third is $3 / 5$ hours $=36$ minutes.
$>$ What is the probability that the station, starting empty, has no cars for 30 minutes after opening?
$>$ Let A be the inter-arrival time. A is exponential with mean $1 / 5$ hours. The desired probability is

$$
P\{A>1 / 2\}=e^{-5 / 2}=0.082 .
$$

- Example 6

$>$ Customers arrive to a system according to a Poisson process with rate λ and if each customer is a man w.p. 0.5 and a woman w.p. 0.5.
$>$ Characterize the arrival process of men into the system.
$>$ It's a Poisson process with rate 0.5λ.

- Example 7

$>$ Cars arrive to an intersection according to a Poisson process with rate λ. A policeman blocks one way and directs the cars to the other way. On average, the policeman directs half of the cars to street A and the other half to street B .
$>$ Characterize the arrival process of cars into street A. Is it Poisson?
$>$ It's not a Poisson process.

- Limiting Probabilities

$>$ Similar to the discrete cases, we define limiting probabilities for a CTMC as

$$
P_{j}=\lim _{t \rightarrow \infty} P_{i j}(t) .
$$

$>$ Similar to the discrete case also, these probabilities can be interpreted as the long-run fraction of time spent in state j.
$>$ The limiting probabilities exist under the following conditions: (i) all states communicate; and (ii) all states are positive recurrent meaning that the expected time to return to a state upon leaving it is finite.
$>$ Assuming that the limiting probabilities exist, they can be determined by Kolmogorov's equations (Theorem 1).
$>$ Letting $t \rightarrow \infty$ in Theorem 1, implies that

$$
\lim _{t \rightarrow \infty} \frac{\partial P_{i j}(t)}{\partial t}=\sum_{k \neq j} q_{k j} \lim _{t \rightarrow \infty} P_{i k}(t)-v_{j} \lim _{t \rightarrow \infty} P_{i j}(t) \Rightarrow 0=\sum_{k \neq j} q_{k j} P_{k}-v_{j} P_{j}
$$

$>$ Therefore,

$$
v_{j} P_{j}=\sum_{k \neq j} q_{k j} P_{k}
$$

$>$ This equation has an interesting and useful interpretation. The left hand side, $v_{j} P_{j}$, is the flow out of state j, and the right hand side, $\sum_{k \neq j} q_{k j} P_{k}$, is the flow into state j.
$>$ This is a flow balance equation (flow out $=$ flow in).

- Example 8

$>$ For the shoeshine shop of Example 1, what is the fraction of time that the shop is busy?

$>$ The desired probability is $P_{1}+P_{2}$ or $1-P_{0}$.
$>$ The limiting probabilities are given by the following flow balance equations.

State $0 . \lambda P_{0}=\mu_{2} P_{2}$.
State 1. $\mu_{1} P_{1}=\lambda P_{0}$.
State 2. $\mu_{2} P_{2}=\mu_{1} P_{1}$.
$>$ Therefore, $P_{1}=\left(\lambda / \mu_{1}\right) P_{0}, P_{2}=\left(\lambda / \mu_{2}\right) P_{0}$. Noting that $P_{0}+P_{1}+P_{2}=1$ implies that $P_{0}=1 /\left[1+\left(\lambda / \mu_{1}\right)+\left(\lambda / \mu_{2}\right)\right]$.
$>$ The desired probability is

$$
1-P_{0}=\left[\left(\lambda / \mu_{1}\right)+\left(\lambda / \mu_{2}\right)\right] /\left[1+\left(\lambda / \mu_{1}\right)+\left(\lambda / \mu_{2}\right)\right] .
$$

- Limiting Probabilities for a Birth-Death Process

$>$ The flow balance equations are
State $0 . \lambda_{0} P_{0}=\mu_{1} P_{1}$.
State 1. $\mu_{1} P_{1}+\lambda_{1} P_{1}=\lambda_{0} P_{0}+\mu_{2} P_{2}$.
State 2. $\mu_{2} P_{2}+\lambda_{2} P_{2}=\lambda_{1} P_{1}+\mu_{3} P_{3}$.
State $n>2 . \mu_{n} P_{n}+\lambda_{n} P_{n}=\lambda_{n-1} P_{n-1}+\mu_{n+1} P_{n+1}$.
$>$ Replacing the first equation in the second gives $\lambda_{1} P_{1}=\mu_{2} P_{2}$.
Replacing this in the third equation gives $\lambda_{2} P_{2}=\mu_{3} P_{3}$.
$>$ Continuing in this manner we find that

$$
\lambda_{n} P_{n}=\mu_{n+1} P_{n+1}, n \geq 0
$$

$>$ Then,

$$
P_{1}=\frac{\lambda_{0}}{\mu_{1}} P_{0}, \quad P_{2}=\frac{\lambda_{1}}{\mu_{2}} P_{1}=\frac{\lambda_{1} \lambda_{0}}{\mu_{2} \mu_{1}} P_{0}, \quad P_{3}=\frac{\lambda_{2}}{\mu_{3}} P_{2}=\frac{\lambda_{2} \lambda_{1} \lambda_{0}}{\mu_{3} \mu_{2} \mu_{1}} P_{0} .
$$

$>$ In general,

$$
P_{n}=\frac{\lambda_{n-1} \lambda_{n-2} \ldots \lambda_{1} \lambda_{0}}{\mu_{n} \mu_{n-1} \ldots \mu_{2} \mu_{1}} P_{0} .
$$

$>$ Since $\sum_{n=0}^{\infty} P_{n}=1$, it follows that

$$
\begin{aligned}
& P_{0}=\left(1+\sum_{n=1}^{\infty} \frac{\lambda_{n-1} \lambda_{n-2} \ldots \lambda_{1} \lambda_{0}}{\mu_{n} \mu_{n-1} \ldots \mu_{2} \mu_{1}}\right)^{-1}, \\
& P_{n}=\frac{\lambda_{n-1} \lambda_{n-2} \ldots \lambda_{1} \lambda_{0}}{\mu_{n} \mu_{n-1} \ldots \mu_{2} \mu_{1}}\left(1+\sum_{n=1}^{\infty} \frac{\lambda_{n-1} \lambda_{n-2} \ldots \lambda_{1} \lambda_{0}}{\mu_{n} \mu_{n-1} \ldots \mu_{2} \mu_{1}}\right)^{-1}, n=1,2, \ldots
\end{aligned}
$$

$>$ A necessary condition for the existence of $P_{n} \mathrm{~S}$ is

$$
\sum_{n=1}^{\infty} \frac{\lambda_{n-1} \lambda_{n-2} \ldots \lambda_{1} \lambda_{0}}{\mu_{n} \mu_{n-1} \ldots \mu_{2} \mu_{1}}<\infty
$$

