Continuous-Time Markov Chains (1)

- Definition and Connection to the Exponential Distribution

$>$ A continuous-time stochastic process $\{X(t), t \geq 0\}$ taking on positive integers is said to be a continuous-time Markov chain (CTMC) if for all $s, t \geq 0, i, j, k_{u}$ integers, $0 \leq u<s$,

$$
P\left\{X(t+s)=j \mid X(s)=i, X(u)=k_{u}\right\}=P\{X(t+s)=j \mid X(s)=i\} .
$$

$>$ If, in addition, these transition probabilities are independent of s, the CTMC is said to have stationary or homogenous transition probabilities. We only consider this kind of CTMC.
$>$ Let T_{i} be the amount spent in state i before making a transition to another state. Then,

$$
\begin{aligned}
P\left\{T_{i}>s+t \mid T_{i}>s\right\} & =P\{X(t+s)=i \mid X(s)=i\} \\
& =P\{X(t)=i \mid X(0)=i\}=P\left\{T_{i}>t\right\} .
\end{aligned}
$$

$>$ Therefore, T_{i} has the memoryless property.
$>$ It follows that T_{i} is exponentially distributed.
$>$ Let v_{i} be the "rate" of transition out of i (i.e., $\mathrm{E}\left[T_{i}\right]=1 / v_{\mathrm{i}}$).
$>$ Define also $P_{i j}$ as the probability that the process enters j after transitioning out of i. By definition,

$$
\begin{aligned}
& P_{i i}=0, \\
& \sum_{j=0}^{\infty} P_{i j}=1 .
\end{aligned}
$$

$>$ The parameters v_{i} and $P_{i j}$ completely define the CTMC.

- Example 1

$>$ Consider a shoeshine shop consisting of two chairs. A customer arrives and set in chair 1, where his shoes are cleaned and polish is applied, and then moves to chair 2 where his shoes is buffed. Suppose that customers interarrival times are iid exponential rvs with rate λ, and that service times at chair i are iid exponential rvs with rate μ_{i}, $i=1,2$. Suppose that a customer will enter the shop only if both chairs are empty.
$>$ This is a CTMC with three states: 0 (both chairs are empty), 1 (a customer is in chair 1), and 2 (a customer is in chair 2).

In this case, $v_{0}=\lambda, v_{1}=\mu_{1}, v_{2}=\mu_{2}, P_{01}=P_{12}=P_{20}=1$, and $P_{i j}=0$, otherwise.
$>$ What if a customer would enter if only chair 1 is empty?
$>$ Add two states: 3 (both chairs busy) and 4 (chair 1 waiting).

- Birth-Death Processes

$>$ Consider a stochastic process $\{X(t), t \geq 0\}$ representing the number of people in a population.
$>$ Suppose that whenever there are n people in a system, the time for the next arrival is exponential with rate λ_{n}, and the time of the next departure is exponential with rate μ_{n}.
$>$ When a departure (arrival) happens in state n, the system moves to state $n-1(n+1)$.
$>$ The process $X(t)$ is called a birth-death process.
$>$ It is a special case of a CTMC with

$$
\begin{aligned}
v_{0} & =\lambda_{0}, P_{01}=1, \\
v_{i} & =\lambda_{i}+\mu_{i}, P_{i, i+1}=\lambda_{i} /\left(\lambda_{i}+\mu_{i}\right), P_{i, i-1}=\mu_{i} /\left(\lambda_{i}+\mu_{i}\right), i>0 .
\end{aligned}
$$

$>$ If $\mu_{i}=0, i=1,2, \ldots, X_{t}$ is called a pure birth process.
$>$ If $\lambda_{i}=0, i=0,1,2, \ldots, X_{t}$ is called a pure death process.

- Example 2

$>$ A pure birth process with $\lambda_{i}=\lambda, i=0,1,2, \ldots$, is a Poisson process. This is the most popular models for arrival processes (where the inter-arrival times are exponential rvs).

- Example 3

$>$ A pure birth process with $\lambda_{i}=i \lambda, i=0,1,2, \ldots$, is called a Yule process. This is a model for a population where every person gives birth at a rate λ, independent of others, and no one dies.

- Example 4

$>$ Consider a system with a single server. Customers arrive to the system according to a Poisson process with rate λ customers per hour. Customers who find the server busy wait in line, and those who find the server idle start service immediately. Service times are iid exponential rvs with rate μ customers per hour.

$>$ This is a queueing model known as the $M / M / 1$ queue.
$>$ It is also a birth-death model with $\lambda_{i}=\lambda$, and $\mu_{i}=\mu$,

$$
i=0,1,2, \ldots
$$

- $\boldsymbol{o}(\mathrm{h})$ Functions

$>$ A function $f(h)$ is said to be $o(h)$ if

$$
\lim _{h \rightarrow 0} \frac{f(h)}{h}=0 .
$$

$>$ E.g., $f(h)=h^{n}, n>1$, is $o(h)$ since $\lim _{h \rightarrow 0} f(h) / h=\lim _{h \rightarrow 0} h^{n-1}=0$.
$>\operatorname{But} f(h)=h$, is not $o(h)$ since $\lim _{h \rightarrow 0} f(h) / h=\lim _{h \rightarrow 0} h / h=1$.

- Properties of Transition Probabilities

$>$ Consider a CTMC $\{X(t), t \geq 0\}$. Denote the transition probability from state i to state j within time t by $P_{i j}(t)$. I.e.,

$$
P_{i j}(t)=P\{X(t+s)=j \mid X(s)=i\} .
$$

$>$ Let $q_{i j}=v_{i} P_{i j}$ be the transition rate from state i to state j.
Lemma 1 The transition probabilities satisfy the following,

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{1-P_{i i}(h)}{h}=v_{i} \\
& \lim _{h \rightarrow 0} \frac{P_{i j}(h)}{h}=q_{i j} .
\end{aligned}
$$

Proof. Note that
$P_{i i}(h)=P\left\{T_{i}>h\right\}=e^{-v_{i} h}=1-v_{i} h+v_{i} h^{2} / 2-v_{i} h^{3} / 6+\ldots=1-v_{i} h+o(h)$, which implies that $1-P_{i i}(h)=v_{i} h+o(h)$. In addition,

$$
P_{i j}(h)=\left(1-P_{i i}(h)\right) P_{i j}=v_{i} P_{i j} h+o(h)=q_{i j} h+o(h) .
$$

Lemma 2 (Chapman-Kolmogorov equations)

$$
P_{i j}(t+h)=\sum_{k=0}^{\infty} P_{i k}(t) P_{k j}(h) .
$$

Proof. Follows by conditioning on the state the process is in at time t, similar to the discrete case.

Theorem 1 (Kolmogorov's forward equations) The

 probability $P_{i j}(t)$ satisfy the following differential equation,$$
\frac{\partial P_{i j}(t)}{\partial t}=\sum_{k \neq j} q_{k j} P_{i k}(t)-v_{j} P_{i j}(t) .
$$

Proof. Lemma 2 implies that

$$
P_{i j}(t+h)-P_{i j}(t)=\sum_{k=0}^{\infty} P_{i k}(t) P_{k j}(h)-P_{i j}(t)=\sum_{k \neq j} P_{i k}(t) P_{k j}(h)-\left(1-P_{i j}(h)\right) P_{i j}(t) .
$$

Therefore,

$$
\lim _{h \rightarrow 0} \frac{P_{i j}(t+h)-P_{i j}(t)}{h}=\lim _{h \rightarrow 0} \sum_{k \neq j} P_{i k}(t) \frac{P_{k j}(h)}{h}-\frac{\left(1-P_{j i}(h)\right)}{h} P_{i j}(t) .
$$

Lemma 1 then completes the proof.

- Pure Birth and Poisson Process Transition Probabilities

$>$ For a pure birth process, Kolmogorov's forward equations can be written as

$$
\begin{aligned}
& \frac{\partial P_{i i}(t)}{\partial t}=-\lambda_{i} P_{i i}(t), \\
& \frac{\partial P_{i, i+k}(t)}{\partial t}=\lambda_{i+k-1} P_{i, i+k-1}(t)-\lambda_{i+k} P_{i, i+k}(t) .
\end{aligned}
$$

$>$ These differential equations have the following solution, which is obtained sequentially.

$$
\begin{aligned}
& P_{i i}(t)=e^{-\lambda_{i} t}, \\
& P_{i, i+k}(t)=\lambda_{i+k-1} e^{-\lambda_{i+k} t} \int_{0}^{t} e^{\lambda_{i+k} s} P_{i, i+k-1}(s) d s
\end{aligned}
$$

$>$ In particular, for a Poisson process, we have $\lambda_{i}=\lambda$. Then,

$$
\begin{aligned}
& P_{i i}(t)=e^{-\lambda t}, \\
& P_{i, i+1}(t)=\lambda_{i} e^{-\lambda_{i+1}+} \int_{0}^{t} e^{\lambda_{i+1} s} P_{i i}(s) d s=\lambda e^{-\lambda t} \int_{0}^{t} e^{\lambda s} e^{-\lambda s} d s=(\lambda t) e^{-\lambda t}, \\
& P_{i, i+2}(t)=\lambda_{i+1} e^{-\lambda_{i+2}+\int^{t}} \int_{0}^{\lambda_{i+2 s} s} P_{i, i+1}(s) d s=\lambda e^{-\lambda t} \int_{0}^{t} e^{\lambda s}(\lambda s) e^{-\lambda s} d s=\frac{(\lambda t)^{2}}{2} e^{-\lambda t}, \\
& \vdots \\
& P_{i, i+k}(t)=\lambda_{i+k-1} e^{-\lambda_{i+k}} \int_{0}^{t} e^{\lambda_{i+1+s} s} P_{i, i+k-1}(s) d s=\lambda e^{-\lambda t} \int_{0}^{t} e^{\lambda s} \frac{(\lambda s)^{k-1}}{(k-1)!} e^{-\lambda s} d s=\frac{(\lambda t)^{k}}{k!} e^{-\lambda t} .
\end{aligned}
$$

$>$ That is, the probability of having k arrival during a time period of length t is a Poisson random variable with mean λt.

