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B. Maddah        INDE 303 Operations Research II 
 

Continuous-Time Markov Chains (1) 

 

• Definition and Connection to the Exponential Distribution 

➢ A continuous-time stochastic process {X(t), t ≥ 0} taking on 

positive integers is said to be a continuous-time Markov 

chain (CTMC) if for all s, t ≥ 0, i, j, ku integers, 0 ≤ u < s,  

{ ( ) | ( ) , ( ) } { ( ) | ( ) }uP X t s j X s i X u k P X t s j X s i+ = = = = + = = . 

➢ If, in addition, these transition probabilities are independent 

of s, the CTMC is said to have stationary or homogenous 

transition probabilities. We only consider this kind of CTMC. 

➢ Let Ti be the amount spent in state i before making a 

transition to another state. Then, 
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➢ Therefore, Ti has the memoryless property.  

➢ It follows that Ti is exponentially distributed.   

➢ Let vi be the “rate” of transition out of i (i.e., E[Ti] = 1/vi). 

➢ Define also Pij as the probability that the process enters j after 

transitioning out of i. By definition,    
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➢ The parameters vi and Pij completely define the CTMC.  
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• Example 1 

➢ Consider a shoeshine shop consisting of two chairs.  A 

customer arrives and set in chair 1, where his shoes are 

cleaned and polish is applied, and then moves to chair 2 

where his shoes is buffed. Suppose that customers inter-

arrival times are iid exponential rvs with rate  and that 

service times at chair i are iid exponential rvs with rate i,      

i = 1 , 2. Suppose that a customer will enter the shop only if 

both chairs are empty. 

➢ This is a CTMC with three states: 0 (both chairs are empty), 

1 (a customer is in chair 1), and 2 (a customer is in chair 2). 

 

 

 

   

➢ In this case, v0 = , v1 = , v2 =  P01 = P12 = P20 = 1, and 

Pij = 0, otherwise.  

➢ What if a customer would enter if only chair 1 is empty? 

➢ Add two states: 3 (both chairs busy) and 4 (chair 1 waiting). 
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• Birth-Death Processes 

➢ Consider a stochastic process {X(t), t ≥ 0} representing the 

number of people in a population. 

➢ Suppose that whenever there are n people in a system, the 

time for the next arrival is exponential with rate n , and the 

time of the next departure is exponential with rate n . 

➢ When a departure (arrival) happens in state n, the system 

moves to state n−1 (n+1). 

➢  The process X(t) is called a birth-death process.  

➢ It is a special case of a CTMC with  

      v0 = 0, P01 =1,                 

       vi = i + i, Pi,i+1 = i  (i + i), Pi,i−1 = i  (i + i), i > 0 . 

 

 

 

 

 

➢ If i = 0, i = 1,2, …, Xt is called a pure birth process. 

➢ If i = 0, i = 0,1,2, …, Xt is called a pure death process. 

 

• Example 2 

➢ A pure birth process with i = i = 0,1,2, …, is a Poisson 

process.  This is the most popular models for arrival 

processes (where the inter-arrival times are exponential rvs). 
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• Example 3 

➢ A pure birth process with i =i i = 0,1,2, …, is called a 

Yule process.  This is a model for a population where every 

person gives birth at a rate  independent of others, and no 

one dies. 

 

• Example 4 

➢ Consider a system with a single server. Customers arrive to 

the system according to a Poisson process with rate 

 customers per hour. Customers who find the server busy 

wait in line, and those who find the server idle start service 

immediately. Service times are iid exponential rvs with rate 

 customers per hour.  

 

 

➢ This is a queueing model known as the M/M/1 queue. 

➢ It is also a birth-death model with i = and i =  

      i = 0, 1, 2, … 
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• o(h) Functions 

➢ A function f(h) is said to be o(h) if  

0

( )
lim 0 .
h

f h

h→
=  

➢ E.g., f(h) = hn, n > 1, is o(h) since 
1

0 0
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h h
f h h h −

→ →
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➢ But f(h) = h, is not o(h) since 
0 0
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h h

f h h h h
→ →

= =  

 

• Properties of Transition Probabilities  

➢ Consider a CTMC {X(t), t ≥0}. Denote the transition 

probability from state i to state j within time t by Pij(t). I.e., 

( ) { ( ) | ( ) }.ijP t P X t s j X s i= + = =  

➢ Let qij = viPij be the transition rate from state i to state j.  
 

Lemma 1 The transition probabilities satisfy the following, 
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Proof.  Note that  

2 3( ) { } 1 / 2 / 6 1 ( ) ,iv h

ii i i i i iP h P T h e v h v h v h v h o h
−

=  = = − + − + = − +

 which implies that 1 ( ) ( ).ii iP h v h o h− = +  In addition,   

( ) (1 ( )) ( ) ( ) .ij ii ij i ij ijP h P h P v P h o h q h o h= − = + = +    █ 
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Lemma 2 (Chapman-Kolmogorov equations)  

0

( ) ( ) ( ) .ij ik kj

k

P t h P t P h


=

+ =   

Proof.  Follows by conditioning on the state the process is in at 

time t, similar to the discrete case. █ 

 

Theorem 1 (Kolmogorov’s forward equations) The 

probability Pij(t) satisfy the following differential equation, 
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Proof.  Lemma 2 implies that    

0
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Lemma 1 then completes the proof.  █ 

 

• Pure Birth and Poisson Process Transition Probabilities 

➢ For a pure birth process, Kolmogorov’s forward equations 

can be written as 
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➢ These differential equations have the following solution, 

which is obtained sequentially.  
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➢ In particular, for a Poisson process, we have i =   Then, 
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➢ That is, the probability of having k arrival during a time 

period of length t is a Poisson random variable with mean t . 

 


