B. Maddah

INDE 303 Operations Research II

Probability and Random Variable

- Sample space and Events

$>$ Suppose that an experiment with an uncertain outcome is performed (e.g., rolling a die).
$>$ While the outcome of the experiment is not known in advance, the set of all possible outcomes is known. This set is the sample space, Ω.
$>$ For example, when rolling a die $\Omega=\{1,2,3,4,5,6\}$. When tossing a coin, $\Omega=\{\mathrm{H}, \mathrm{T}\}$. When measuring life time of a machine (years), $\Omega=\{1,2,3, \ldots\}$.
$>A$ subset $E \subset \Omega$ is known as an event.
$>$ E.g., when rolling a die, $E=\{1\}$ is the event that one appears and $F=\{1,3,5\}$ is the event that an odd number appears.

- Probability of an event

$>$ If an experiment is repeated for a number of times which is large enough, the fraction of time that event E occurs is the probability that event E occurs, $P\{E\}$.
$>$ E.g., when rolling a fair die, $P\{1\}=1 / 6$, and $P\{1,3,5\}=$ $3 / 6=1 / 2$. When tossing a fair coin, $P\{\mathrm{H}\}=P\{\mathrm{~T}\}=1 / 2$.
$>$ In some cases, events are not repeated many times.
$>$ For such cases, probabilities can be a measure of belief (subjective probability).

- Axioms of probability

(1) For $E \subset \Omega, 0 \leq P\{E\} \leq 1$;
(2) $P\{\Omega\}=1$;
(3) For events $E_{1}, E_{2}, \ldots, E_{i}, \ldots$, with $E_{i} \subset \Omega, E_{i} \cap E_{j}=\varnothing$, for all i and $j, P\left\{\bigcup_{i=1}^{\infty} E_{i}\right\}=\sum_{i=1}^{\infty} P\left\{E_{i}\right\}$.

- Implications
$>$ The axioms of probability imply the following results:
o For E and $F \subset \Omega$,

$$
P\{E \text { "or" } F\}=P\{E \cup F\}=P\{E\}+P\{F\}-P\{E \cap F\} ;{ }^{1}
$$

o If E and F are mutually exclusive (i.e., $E \cap F=\varnothing$), then $P\{E \cup F\}=P\{E\}+P\{F\} ;$
o For $E \subset \Omega$, let E^{c} be the complement of E (i.e., $E \cup E^{c}=\Omega$),

$$
P\left\{E^{c}\right\}=1-P\{E\}
$$

о $P\{\varnothing\}=0$.

- Conditional probability

$>$ The probability that event E occurs given that event F has already occurred is

$$
P\{E \mid F\}=\frac{P\{E \cap F\}}{P\{F\}} .
$$

[^0]
- Independent events

$>$ For E and $F \subset \Omega, P\{E \cap \mathrm{~F}\}=P\{E \mid F\} P\{F\}$.
$>$ Two events are independent if an only if

$$
P\{E \cap F\}=P\{E\} P\{F\} \text {. That is, } P\{E \mid F\}=P\{E\} \text {. }
$$

- Example 1

$>$ Let $\Omega=\left\{\mathrm{E}_{1}, \ldots, \mathrm{E}_{10}\right\}$, where E_{i} are mutually exclusive. It is known that $P\left\{E_{i}\right\}=1 / 20, i=1, \ldots, 6, P\left\{E_{i}\right\}=1 / 5, i=7, \ldots, 9$, and $P\left\{E_{10}\right\}$ $=3 / 20$,
$>\operatorname{Do} P\left\{E_{i}\right\}$ satisfy the axioms of probability?
$>$ No, since $\Sigma P\left\{E_{i}\right\}>1$.

- Example 2

> Suppose that two fair coins are tossed. What is the probability that either the first or the second coin falls heads?
$>$ In this example, $\Omega=\{(\mathrm{H}, \mathrm{H}),(\mathrm{H}, \mathrm{T}),(\mathrm{T}, \mathrm{H}),(\mathrm{T}, \mathrm{T})\}$. Let $E(F)$ be the event that the first (second) coin falls heads, $E=\{(\mathrm{H}, \mathrm{H}),(\mathrm{H}, \mathrm{T})\}$ and $F=\{(\mathrm{H}, \mathrm{H}),(\mathrm{T}, \mathrm{H})\}$, and $\mathrm{E} \cap \mathrm{F}=\{\mathrm{H}, \mathrm{H}\}$. The desired probability is

$$
P\{E \cup F\}=P\{E\}+P\{F\}-P\{E \cap F\}=1 / 2+1 / 2-1 / 4=3 / 4 .
$$

- Example 3

$>$ When rolling two fair dice, suppose the first die is 3 , what is the probability the sum of the two dice is 7 ?
$>$ Let E be the event that the sum of the two dice is $7, E=\{(1,6),(2$, 5), $(3,4),(4,3),(5,2),(6,1)\}$, and F be the event that the first die is $3, F=\{(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)\}$. Then,

$$
\begin{aligned}
P\{E \mid F\} & =\frac{P\{E \cap F\}}{P\{F\}}=\frac{P\{(3,4)\}}{P\{(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)\}} \\
& =\frac{1 / 36}{6 / 36}=\frac{1}{6}
\end{aligned}
$$

- Example 4

$>$ A family has two kids. At least one of them is a boy. What is the probability that both are boys?
$>$ In this example, $\Omega=\{(\mathrm{b}, \mathrm{b}),(\mathrm{b}, \mathrm{g}),(\mathrm{g}, \mathrm{b}),(\mathrm{g}, \mathrm{g})\}$. Let $E=\{$ Both kids are boys $\}$ and $F=\{$ At least one kid is a boy $\}$. The required probability is then

$$
P\{E \mid F\}=\frac{P\{E \cap F\}}{P\{F\}}=\frac{P\{(b, b)\}}{P\{(b, g),(g, b),(b, b)\}}=\frac{1 / 4}{3 / 4}=1 / 3 .
$$

- Example 5

> An urn contains three white balls and four black balls. Two balls are drawn without replacement.

- What is the probability that the two balls are black?
$>$ Let $F=\{$ First ball is black $\}$, and $E=\{$ Second ball is black $\}$. The desired probability is

$$
P\{E \cap F\}=P\{F\} P\{E \mid F\}=(4 / 7)(3 / 6)=2 / 7 .
$$

$>$ What is the probability that the both balls are of the same color?
$>\mathrm{P}\{$ same color $\}=\mathrm{P}$ \{both black $\}+\mathrm{P}$ \{both white $\}$

$$
=2 / 7+(3 / 7)(2 / 6)=3 / 7 .
$$

- Finding Probability by Conditioning

$>$ Suppose that we know the probability of event B once event A is realized (or not). We also know $P\{A\}$. That is, we know $P\{B \mid A\}$, and $P\left\{B \mid A^{\mathrm{c}}\right\}$ and $P\{A\}$. What is $P\{B\}$?
$>$ Note that

$$
B=(A \cap B) \cup\left(A^{c} \cap B\right) \Rightarrow P\{B\}=P\{A \cap B\}+P\left\{A^{c} \cap B\right\}
$$

$>$ Therefore,

$$
\begin{aligned}
P\{B\} & =P\{B \mid A\} P\{A\}+P\left\{B \mid A^{c}\right\} P\left\{A^{c}\right\} \\
& =P\{B \mid A\} P\{A\}+P\left\{B \mid A^{c}\right\}(1-P\{A\}) .
\end{aligned}
$$

$>$ Here we are finding $P\{B\}$ by "conditioning" on A.
$>$ In general, if the realization of B depends on a partition A_{i} of
$\Omega, A_{1} \cup A_{2} \cup \ldots \cup A_{n}=\Omega, A_{i} \cap A_{j}=\varnothing,(i, j) \in\{1, \ldots, n\}^{2}, i \neq j$,

$$
P\{B\}=\sum_{i=1}^{n} P\left\{B \mid A_{i}\right\} P\left\{A_{i}\right\}
$$

- Bayes' Formula

$>$ This follows from conditional probabilities. For two events,

$$
P\{A \mid B\}=\frac{P\{A \cap B\}}{P\{B\}}=\frac{P\{B \mid A\} P\{A\}}{P\{B \mid A\} P\{A\}+P\left\{B \mid A^{c}\right\} P\left\{A^{c}\right\}} .
$$

$>$ With a partition A_{i},

$$
P\left\{A_{j} \mid B\right\}=\frac{P\left\{A_{j} \cap B\right\}}{P\{B\}}=\frac{P\left\{B \mid A_{j}\right\} P\left\{A_{j}\right\}}{\sum_{i=1}^{n} P\left\{B \mid A_{i}\right\} P\left\{A_{i}\right\}} .
$$

- Example 6

$>$ Consider two urns. The first urn contains three white and seven black balls, and the second contains five white and five black balls. We flip a coin and then draw a ball from the first urn or the second urn depending on whether the outcome was heads or tails.
$>$ What is the probability that a white ball is selected?

$$
\begin{aligned}
P\{W\}=\mathrm{P}\{W \mid H\} \mathrm{P}\{H\}+\mathrm{P}\{W \mid T\} P\{T\} & =(3 / 10)(1 / 2)+(5 / 10)(1 / 2) \\
& =2 / 5 .
\end{aligned}
$$

$>$ What is the probability that a black ball is selected? $P\{B\}=1-P\{W\}=3 / 5$.
$>$ What is the probability that the coin has landed heads given that a white ball is selected?

From Bayes' formula, $P\{H \mid W\}=\frac{P\{W \mid H\} P\{H\}}{P\{W\}}=\frac{(3 / 10)(1 / 2)}{2 / 5}=\frac{3}{8}$.

- Example 7

$>$ In a n assembly plant, three machines, M_{1}, M_{2}, and M_{3}, make 30%, 45%, and 25%, respectively of the products. It is known that $2 \%, 3 \%$, and 2% of the products made by each machine, respectively, are defective.
> What is the probability that a randomly selected product is defective?

$$
\begin{aligned}
P\{D\} & =P\left\{D \mid M_{1}\right\} P\left\{M_{1}\right\}+P\left\{D \mid M_{2}\right\} P\left\{M_{2}\right\}+P\left\{D \mid M_{3}\right\} P\left\{M_{3}\right\} \\
& =(0.02)(0.3)+(0.03)(0.45)+(0.02)(0.25)=0.0245 .
\end{aligned}
$$

$>$ If a product is found to be defective, what is the probability that it's made by M_{2} ?

$$
P\left\{M_{2} \mid D\right\}=\frac{P\left\{D \mid M_{2}\right\} P\left\{M_{2}\right\}}{P\{D\}}=\frac{(0.03)(0.45)}{0.025}=0.551 \text {. }
$$

- Example 8

$>$ In answering a question on a multiple-choice test, a student either knows the answer or guesses. Let p be the probability that she knows the answer. Assume that the student who guesses the answer will answer correctly with probability $1 / m$, where m is the number of multiple-choice alternatives.
> What is the probability that a student answers a question correctly?

$$
\begin{aligned}
P\{\text { Correct }\} & =P\{\text { Correct } \mid \text { Know }\} P\{\text { Know }\}+P\{\text { Correct } \mid \text { Guess }\} P\{\text { Guess }\} \\
& =(1)(p)+(1 / m)(1-p) \\
& =p+(1-p) / m
\end{aligned}
$$

$>$ E.g., if you know the answers to half of EEE questions ($m=4, p=$ $1 / 2$), then the probability of a correct answer is $1 / 2+1 / 8=5 / 8$, and your likely score is 500/800.
> What is the conditional probability that a student guessed the question given that she answered correctly?

$$
\begin{aligned}
\mathrm{P}\{\text { Guess } \mid \text { Correct }\} & =P\{\text { Correct } \mid \text { Guess }\} P\{\text { Guess }\} / P\{\text { Correct }\} \\
& =(1 / m)(1-p) /[p+(1-p) / m] \\
& =(1-p) /[m p+(1-p)] .
\end{aligned}
$$

$>$ In the EEE case, the conditional probability of guessing given a right answer is $(1 / 2) /(2+1 / 2)=1 / 5$.

[^0]: ${ }^{1} \mathrm{P}\{E \cap F\}=\mathrm{P}\{E$ "and" $F\}$.

