Probability and Random Variable (1)

• Sample space and Events

- ➤ Suppose that an experiment with an uncertain outcome is performed (e.g., rolling a die).
- \triangleright While the outcome of the experiment is not known in advance, the set of all possible outcomes is known. This set is the sample space, Ω .
- For example, when rolling a die $\Omega = \{1, 2, 3, 4, 5, 6\}$. When tossing a coin, $\Omega = \{H, T\}$. When measuring life time of a machine (years), $\Omega = \{1, 2, 3, ...\}$.
- \triangleright A subset $E \subset \Omega$ is known as an event.
- \triangleright E.g., when rolling a die, $E = \{1\}$ is the event that one appears and $F = \{1, 3, 5\}$ is the event that an odd number appears.

• Probability of an event

- ➤ If an experiment is repeated for a number of times which is large enough, the fraction of time that event E occurs is the probability that event E occurs, $P\{E\}$.
- ➤ E.g., when rolling a fair die, $P\{1\} = 1/6$, and $P\{1, 3, 5\} = 3/6 = 1/2$. When tossing a fair coin, $P\{H\} = P\{T\} = 1/2$.
- ➤ In some cases, events are not repeated many times.
- For such cases, probabilities can be a measure of belief (subjective probability).

• Axioms of probability

- (1) For $E \subset \Omega$, $0 \le P\{E\} \le 1$;
- (2) $P\{\Omega\} = 1$;
- (3) For events $E_1, E_2, ..., E_i, ...$, with $E_i \subset \Omega$, $E_i \cap E_j = \emptyset$, for all i and j, $P\left\{\bigcup_{i=1}^{\infty} E_i\right\} = \sum_{i=1}^{\infty} P\{E_i\}$.

• Implications

- > The axioms of probability imply the following results:
 - \circ For E and $F \subset \Omega$,

$$P\{E \text{ "or" } F\} = P\{E \cup F\} = P\{E\} + P\{F\} - P\{E \cap F\};$$

- o If E and F are mutually exclusive (i.e., $E \cap F = \emptyset$), then $P\{E \cup F\} = P\{E\} + P\{F\}$;
- o For $E \subset \Omega$, let E^c be the complement of E (i.e., $E \cup E^c = \Omega$), $P\{E^c\} = 1 P\{E\}$;
- o $P\{\emptyset\} = 0$.

• Conditional probability

The probability that event *E* occurs given that event *F* has already occurred is

$$P\{E \mid F\} = \frac{P\{E \cap F\}}{P\{F\}}.$$

 $[\]frac{1}{1} \operatorname{P} \{ E \cap F \} = \operatorname{P} \{ E \text{ "and" } F \} .$

• Independent events

- \triangleright For E and $F \subset \Omega$, $P\{E \cap F\} = P\{E/F\}P\{F\}$.
- > Two events are independent if an only if $P\{E \cap F\} = P\{E\}P\{F\}$. That is, $P\{E/F\} = P\{E\}$.

• Example 1

- Let $\Omega = \{E_1, ..., E_{10}\}$, where E_i are mutually exclusive. It is known that $P\{E_i\} = 1/20$, i = 1, ..., 6, $P\{E_i\} = 1/5$, i = 7, ..., 9, and $P\{E_{10}\} = 3/20$,
- ightharpoonup Do $P\{E_i\}$ satisfy the axioms of probability?
- ightharpoonup No, since $\Sigma P\{E_i\} > 1$.

• Example 2

- ➤ Suppose that two fair coins are tossed. What is the probability that either the first or the second coin falls heads?
- In this example, $\Omega = \{(H, H), (H, T), (T, H), (T, T)\}$. Let E(F) be the event that the first (second) coin falls heads, $E = \{(H, H), (H, T)\}$ and $F = \{(H, H), (T, H)\}$, and $E \cap F = \{H, H\}$. The desired probability is $P\{E \cup F\} = P\{E\} + P\{F\} P\{E \cap F\} = 1/2 + 1/2 1/4 = 3/4$.

• Example 3

- ➤ When rolling two fair dice, suppose the first die is 3, what is the probability the sum of the two dice is 7?
- Let *E* be the event that the sum of the two dice is 7, $E = \{(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)\}$, and *F* be the event that the first die is $3, F = \{(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6)\}$. Then,

$$P\{E \mid F\} = \frac{P\{E \cap F\}}{P\{F\}} = \frac{P\{(3,4)\}}{P\{(3,1), (3,2), (3,3), (3,4), (3,5), (3,6)\}}$$
$$= \frac{1/36}{6/36} = \frac{1}{6}.$$

• Example 4

- ➤ A family has two kids. At least one of them is a boy. What is the probability that both are boys?
- In this example, $\Omega = \{(b, b), (b, g), (g, b), (g, g)\}$. Let $E = \{Both kids are boys\}$ and $F = \{At least one kid is a boy\}$. The required probability is then

$$P\{E \mid F\} = \frac{P\{E \cap F\}}{P\{F\}} = \frac{P\{(b,b)\}}{P\{(b,g),(g,b),(b,b)\}} = \frac{1/4}{3/4} = 1/3.$$

• Example 5

- An urn contains three white balls and four black balls. Two balls are drawn without replacement.
- ➤ What is the probability that the two balls are black?
- ightharpoonup Let $F = \{\text{First ball is black}\}$, and $E = \{\text{Second ball is black}\}$. The desired probability is

$$P{E \cap F} = P{F}P{E \mid F} = (4/7)(3/6) = 2/7.$$

- ➤ What is the probability that the both balls are of the same color?
- ► P{same color} = P{both black} + P{both white} = 2/7 + (3/7)(2/6) = 3/7.

• Finding Probability by Conditioning

- Suppose that we know the probability of event B once event A is realized (or not). We also know $P\{A\}$. That is, we know $P\{B|A\}$, and $P\{B|A^c\}$ and $P\{A\}$. What is $P\{B\}$?
- ➤ Note that

$$B = (A \cap B) \cup (A^c \cap B) \Rightarrow P\{B\} = P\{A \cap B\} + P\{A^c \cap B\}.$$

> Therefore,

$$P\{B\} = P\{B|A\}P\{A\} + P\{B|A^c\}P\{A^c\}$$
$$= P\{B|A\}P\{A\} + P\{B|A^c\}(1 - P\{A\}).$$

- \triangleright Here we are finding $P\{B\}$ by "conditioning" on A.
- ➤ In general, if the realization of *B* depends on a *partition* A_i of Ω , $A_1 \cup A_2 \cup ... \cup A_n = \Omega$, $A_i \cap A_i = \emptyset$, $(i, j) \in \{1, ..., n\}^2$, $i \neq j$,

$$P\{B\} = \sum_{i=1}^{n} P\{B \mid A_i\} P\{A_i\}.$$

• Bayes' Formula

> This follows from conditional probabilities. For two events,

$$P\{A \mid B\} = \frac{P\{A \cap B\}}{P\{B\}} = \frac{P\{B \mid A\}P\{A\}}{P\{B \mid A\}P\{A\} + P\{B \mid A^c\}P\{A^c\}}.$$

 \triangleright With a partition A_i ,

$$P\{A_j \mid B\} = \frac{P\{A_j \cap B\}}{P\{B\}} = \frac{P\{B \mid A_j\}P\{A_j\}}{\sum_{i=1}^n P\{B \mid A_i\}P\{A_i\}}.$$

• Example 6

- ➤ Consider two urns. The first urn contains three white and seven black balls, and the second contains five white and five black balls. We flip a coin and then draw a ball from the first urn or the second urn depending on whether the outcome was heads or tails.
- What is the probability that a white ball is selected? $P\{W\} = P\{W|H\}P\{H\} + P\{W|T\}P\{T\} = (3/10)(1/2) + (5/10)(1/2) = 2/5$.
- What is the probability that a black ball is selected? $P\{B\} = 1 P\{W\} = 3/5$.
- ➤ What is the probability that the coin has landed heads given that a white ball is selected?

From Bayes' formula,
$$P\{H \mid W\} = \frac{P\{W \mid H\}P\{H\}}{P\{W\}} = \frac{(3/10)(1/2)}{2/5} = \frac{3}{8}$$
.

• Example 7

- ➤ In a n assembly plant, three machines, M_1 , M_2 , and M_3 , make 30%, 45%, and 25%, respectively of the products. It is known that 2%, 3%, and 2% of the products made by each machine, respectively, are defective.
- What is the probability that a randomly selected product is defective? $P\{D\} = P\{D|M_1\}P\{M_1\} + P\{D|M_2\}P\{M_2\} + P\{D|M_3\}P\{M_3\}$ = (0.02)(0.3) + (0.03)(0.45) + (0.02)(0.25) = 0.0245.
- \triangleright If a product is found to be defective, what is the probability that it's made by M_2 ?

$$P\{M_2 \mid D\} = \frac{P\{D \mid M_2\}P\{M_2\}}{P\{D\}} = \frac{(0.03)(0.45)}{0.025} = 0.551.$$

• Example 8

- ➤ In answering a question on a multiple-choice test, a student either knows the answer or guesses. Let *p* be the probability that she knows the answer. Assume that the student who guesses the answer will answer correctly with probability 1/*m*, where *m* is the number of multiple-choice alternatives.
- What is the probability that a student answers a question correctly? $P\{\text{Correct}\}=P\{\text{Correct}|\text{Know}\}P\{\text{Know}\}+P\{\text{Correct}|\text{Guess}\}P\{\text{Guess}\}$ =(1)(p)+(1/m)(1-p)=p+(1-p)/m
- E.g., if you know the answers to half of EEE questions (m = 4, p = 1/2), then the probability of a correct answer is 1/2 + 1/8 = 5/8, and your likely score is 500/800.
- ➤ What is the conditional probability that a student guessed the question given that she answered correctly?

$$P\{Guess|Correct\} = P\{Correct|Guess\}P\{Guess\}/P\{Correct\}$$
$$= (1/m) (1-p)/[p + (1-p)/m]$$
$$= (1-p)/[mp + (1-p)].$$

➤ In the EEE case, the conditional probability of guessing given a right answer is (1/2)/(2+1/2) = 1/5.