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 Writing LP in standard form 

 In this form all constraints are transformed into equalities.  
 This is achieved by adding slack variables for “≤” constraints 

and surplus variables for “≥” constraints. 
 For example, the LP 
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 Definitions 

  A constraint is binding at a given point if this point is on the  
  constraint (i.e., the point’s coordinates satisfy the constraint  
  as an equality).   

  In a LP with n decision variables, a corner point  is a point   
 where n or more constraints are binding.  

 
Theorm If a LP has an optimal solution then there exists an 

optimal solution corresponding to a corner point.   
 

 Graphical motivation for the simplex method 

 Consider the following LP written in standard form  
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 Choose an initial corner point feasible solution (i.e., basic 

feasible solution).  In the current example, O(0, 0) can serve 
as such solution. 

 At O define the “zero-variables” x1 and x2 as the nonbasic 
variables.  Define the remaining nonzero variables S1 and S2 
as the basic variables. 

 The problem is of the “max” type.  To increase the value of 
Z, one  may increase x1 or x2 from their current zero levels at 
O.    

 We select to increase x2 since it has a better per unit 
contribution to the objective function.  We call x2 the 
entering variable since it will be > 0 and therefore become 
basic (x2 enters the basis). 

 Keeping x1 fixed at 0, increase x2 (i.e. move along the 
direction of x2) while remaining feasible. 

 We see that the maximum we can increase x2 is when A is 
reached (i.e., x2 is increased from 0 to 4).  Increasing x2 
further would make   S2 < 0.  We call S2 the “blocking 

variable.” 
 The simplex method requires that the blocking variable 

leaves the basis and be replaced by the entering variable.   
 The simplex method then restarts at A with nonbasic 

variables x1 and S2 and basic variables S1 and x2. 
 The simplex method then moves to other extreme points in a 

similar fashion until the optimal solution is reached. 
 In the current example, it can be verified that the simplex 

algorithm will move from A to B and stop with B being the 
optimal solution.  This last move involves x1 entering the 
basis and S1 (the blocking variable) leaving the basis.   

 The simplex “path” is plotted above. 
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 Analytical verification of “blocking” 

 One can verify which basic variable is blocking analytically 
without looking at the graph.   

 For example, consider the first simplex move (iteration) from 
O to A. To verify whether S1 or S2 is the blocking variable 
note that when moving along the x2 direction (and x1 = 0) the 
LP constraints give 
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 Therefore, as x2 increases from zero (at O) S2 hits zero first.  
That is, S2 is the blocking variable. 
 

 Introduction to the simplex method in tabular form  

 Rewrite the LP in standard form as 
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           This gives the simplex tableau at O 

 

 
Basic Z x1 x2 S1 S2 RHS Ratio 
Z 1 -3 -4 0 0 0 - 
S1 0 3 2 1 0 6 6/2=3 
S2 0 1 4 0 1 4 4/4=1 
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 Once the tableau is constructed, we determine the entering 
variable.  This is the variable with the most negative value in 
the Z row.  In our example, it’s x2.  This corresponds to 
choosing to increase x2 in the graphical method. 

 We then determine the leaving or the blocking variable.  This 
is based on a “minimum ration test.”  The blocking variable 

is the basic variable having the minimum ratio between the 
right hand side (RHS) and the corresponding cell in the 
entering variable column.  See the Ratio column in the above 
tableau. This implies that S2 leaves the basis.  

 With the new basic and nonbasic variables we need to 
develop a new simplex tableau (which corresponds to the 
new corner point the simplex moved to; in our case the new 
corner point is A). 

 The new tableau is filled by utilizing the element at the 
intersection of the entering variable column and the leaving 
variable row as pivot element in Gauss-Jordan raw 

operations. 
 If ark is the pivot element (in our example, ark = a33 = 4), then 

rows ai, are rewritten in the new tableau as 
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 Applying this procedure to the above tableau gives the 

following simplex tableau (at A)  
 

 

 
Basic Z x1 x2 S1 S2 RHS Ratio 

Z 1 -2 0 0 1 4 - 
S1 0 5/2 0 1 -1/2 4 8/5 
x2 0 1/4 1 0 1/4 1 4 
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 Optimality criteria: The optimal solution is reached when all 
the values in the Z-row are nonnegative.   

 This is not the case in the above tableau.   
 Therefore, we perform another “simplex iteration.”  (This 

iteration corresponds to moving from A to B in the graphical 
method.) 

 Applying similar steps as with the first table we see that x1 
enters the basis and S1 leaves the basis yielding the following 
simplex tableau (at B) 

 
Basic Z x1 x2 S1 S2 RHS Ratio 

Z 1 0 0 4/5 3/5 36/5 - 
x1 0 1 0 2/5 -1/5 8/5 - 
x2 0 0 1 -1/10 3/10 3/5 - 

 

 In this tableau, all the values in the Z-row are ≥ 0.  This 

indicates that the simplex method has “converged” to the 

optimal solution.  The optimal solution is  
1 2* 8/5, * 3/5.x x   

 The corresponding Z* is 36/5.   
 Note that this indeed corresponds to corner point B.  

 

 Basic, feasible, basic feasible, and basic infeasible solutions 

 A basic solution corresponds to a corner point.  For example, 
in the above (refer to the figure on page 2), O, A, B, C, D, 
and E all correspond to basic solutions. 

 A feasible solution is a solution that satisfies all constraints. 
 A basic solution can either be feasible (hence called basic 

feasible solution) or infeasible (called basic infeasible 
solution).   

 In the above, O, A, B, C are basic feasible solutions, while E 
and F are basic infeasible solutions. 
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 The simplex method starts at a basic feasible solution and 
iterates through a sequence of basic feasible solutions until it 
reaches optimality. 

 

 Local optimal and global optimal 

 In a LP, a local optimal is a global optimal.   
 If in a maximization (minimization) problem the Z-value of a 

corner point is larger (smaller) than that of the adjacent 
corner points, then this corner point is an optimal solution. 

 For example, knowing that the Z-value at A, B, and C are 4, 
36/5, and 6 respectively in the above example, allows us to 
conclude that B is optimal. 

 

 Accurate definition of  “simplex” and how it comes into play 

 A corner point and its adjacent corner points define a 
“simplex” 

 Loosely defined, a simplex in n is the geometric shape 
which defines an object in n  with the minimum number of 
corner points.  

 For example, in 1 , a simplex is a line segment.  In 2  (the 
plane) a simplex is a triangle and in 3  (the 3D space) a 
simplex is a tetrahedron.  

 

 

 

 At each iteration, the simplex method examines whether the 
solution can be improved by moving along the edges of a 
simplex having the current solution as on one of its vertices.   

 This procedure gives an optimal solution because a local 
optimal is a global optimal as explained above.  

 

 


