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Chapter 13 Additional Option Topics (1)

e Overview and some History

» We saw how binomial lattices can be used to price options.

» Binomial lattices assume discrete state space and time points
where the stock price can change.

» Now, we will see how to price options based on a continuous
geometric Brownian motion model for the stock price.

» The derivation given here was originated in the seminal
papers by Black and Scholes (1973) and Merton (1973).!

» Black, Scholes and Merton work won them the Nobel prize
in Economics in 1997 (Black passed away before receiving
the award).

» This work also fueled interest in finance and contributed to
the emergence of Financial Engineering.

» Merton and Scholes were also among the founders of the
multi-billion dollars company Long Term Capital
Management (LTCM) which relied on heavy mathematics
and fast computers.

» However, LTCM collapsed due to unexpected events in the

market. (Guess, Brownian motion didn’t work then!)

" Black, F. and M. Scholes. The pricing of options and other corporate liabilities. Journal of Political
Economy 81: 673-654, 637-654, 1973.

Merton, R. C. Theory of rational option pricing. Bell Journal of Economics and Management Science 4:
141-183, 1973.



e The Black-Scholes Equation
Theorem Suppose the stock price follows a geometric
Brownian motion defined by dS(t) = uS(t)dt+oS(t)dz and let r
be the risk-free interest rate. Then, a derivative security has a
(no-arbitrage) price f (S, t) (at time t) which satisfies the partial
differential equation
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Proof. We will present the original proof of Black and Sholes
(1973) (see also Hull 2006).> Tt is based on (i) Ito’s lemma; (ii)
forming a portfolio of the option and the stock in a way that
eliminates uncertainty; and (iii) equating the portfolio return to
the risk-free return to avoid arbitrage. By Ito’s lemma, the
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For the stock price,
AS = uS At+0S Az | (2)

and for a risk-free asset (a bond) with price B under continuous
compounding
AB=rB At . 3)

Consider a portfolio consisting of shorting one unit of the

o . : 0
derivative security and buying an amount % of stocks.

2 Our text (Luenberger) adopts a different approach.



The value of this portfolio is [T=-f tos 8f

The change of the portfolio value in a small time interval Az is

AH:—Af+a—§AS
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Note that AIT does not involve the random term Az. That 1s,
the portfolio is risk-free. Therefore, in order to avoid arbitrage

the portfolio value must satisfy an equation similar to (3),
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The proof follows upon simplification. ||j

Simple Black-Scholes Equation Verification
» To see that the Black-Scholes equation makes sense, consider
some simple cases.

» If the derivative security is the stock itself, then f'(S, 1) = S,
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=0+7r5+0="rS (i.e., equation holds).

» If the derivative security is a bond with value $1 at time 0,
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then £ (S, ) = €” §*=re" +0+0=1f

» To avoid arbitrage, the price of any derivative security must

satisfy the Black-Scholes equation (if assumptions hold).



e Pricing Securities by Solving the Black-Scholes Equation
» Determining the price of a derivative security can be done
using the Black-Scholes equation once appropriate boundary
conditions are specified.
» For a European call option maturing at time 7" and with strike
price K and price C(S, ¢) at ¢, the boundary condition is
C(S, T)=max(S—-K, 0) .
» For a European put option with price P(S, ) at ¢ the boundary
condition is
P(S, T)=max(K -5, 0) .
» For an American put option an additional boundary

condition related to early exercise is required

P(S, t)Z2max(K -8, 0) .

e Perpetual Call

» This is an American call option with expiration time 7= oo .

> Let f(S, ) be the price at time ¢. Then, f{S, ¢) satisfies the early
exercise condition (S, £) > max(0, S—K).

» In addition, the call must cost less than the stock price at ¢,
AS, H)<S.

» The function f{S, 7) = S, satisfies both boundary conditions
and Black-Scholes differential equation.

» Therefore, f(S, t) =S (i.e. perpetual value equals stock price).



e The Black-Scholes Call Option Formula
» In the case of a European call option, the Back-Scholes
differential equation has a closed form solution.
Theorem The price at time t of a European call option with
strike price K and maturity T on an underlying stock with
volatility o is
C(S,t)=SN(d,)-Ke " "N(d,) ,

In(S/K)+(r+0”/2)(T —1)
oNT —t

where S is the stock price at time t, d, =

)
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dy=d —oNT—t and N(x)= _[ s dx js the standard Normal cdf.

» To prove the call option formula, Black and Scholes (1973)
make the following change of variables

F(S,0) ="y (u(S,0),v(s,1)),

u(S,t) :é(r—%zj{ln%—(r—%zj(t—T)} ,

V(S,l‘)=—%(7’—%2] t-T).

» They then argue that the differential equation reduces to
»_0oy
ov  ou’
with boundary conditions

0, if u<0
y(u,0)= K[é“"””“"az/z) —1], ifu>0"



» Black and Scholes call this differential equation as the “heat-
transfer equation of physics”, and refer to Churchill (1963)

for a solution.

e Simple Black-Scholes Formula Verification
» Atexpiration, =T

N d=d,=w,ifS>K _ ) C(S.T)=5N(d)) -Ke""PN(d,)=5S-K, ifS>K
d=d,=—,ifS<K |C(S,T)=N®d(d,)-Ke" " "N(d,)=0-0=0,ifS > K

» Foraperpetual call, T=w0 = d,=d, =

= C(S,)=SN(d,)-Ke ™ (d,)=S.

e Black-Scholes Formula Interpretation (Sharpe 1999)
» Similar to the binomial lattice model holding the call option
is equivalent to holding a replicating portfolio having N(d,)
stocks and borrowing KN(d,) cash (i.e. shorting KN(d,) of the
risk-free asset).
» Note that the replicating portfolio composition is
continuously changing as the stock price fluctuates and time

advances.



e Risk-Neutral Valuation

» The variable p (stock expected rate of return) does not
appear in the Black-Scholes equation. Therefore, the equation
is independent of risk preference.

» The solution to the differential equation is therefore the same
in a risk-free world as it is in the real world.

» This leads to the principle of risk-neutral valuation (similar to
the binomial lattice model).

» For the geometric Brownian motion model,
dS(T)=uS(T)dt+o0S(T)dz, the stock price at time 7> ¢ is
lognormal with E[S(T)] = S(H)e"" .

> In a risk-neutral setting, E[S(T)] = S()e’" " .

» Therefore, the risk-neutral “g-distribution” of the stock price
1s a geometric Brownian motion with an expected rate of
return 7, i.e., dS(T) = rS(T)dt + cS(T)d? , where Z is a
Brownian motion.

» This implies that in the risk-neutral world the stock price
distribution at time 7 is lognormal with parameters
E[InS(T)] = In S(¢) + (r — 6*/2)(T—1) , var[InS(T)] =c°T(T—1) .

» Then, the price of a derivative security with expiration date 7
under risk-neutral pricing (which is the “right” price) is

f(S,0)=e""ELf(S,T)],

where E denotes the expectation with respect to £ .



e Simple Risk-Neutral Verification
» If the derivative security is the stock itself, f(S,7)=S(7),

[(S,t)=e"TVE[f(S,T)]= eir(Tit)J.STgST (s;)ds; =e " VE[S(T)]
0
— e—r(T—t)S(t)er(T—t) — S(l) ,
where g5, () is the lognormal density function of S(7).

» For a derivative security consisting of $1 of cash (risk-free

asset) at time 0, AS,7) = ¢,

0

£(8.0)=e"ELf(S.T)]=e"" [e” g, (s;)ds, =1.

0

e Risk-Neutral Derivation of the Black-Scholes Formula
» We first present the following supporting lemma. This is
from Hull (2006).
Lemma [/f X is a lognormal random variable with
parameters E[In(X)] = A and var[In(X)] = o, then
E[max(X —K,0)]=¢**" *N(d,)— KN(d,),

In[e**" "/ K]+ 0 /2
(o2

where d, = and d,=d, —o.

» The proof of this lemma is obtained by using the standard
change of variable Y = (In X — A)/G, and noting that

0

Elmax(S-K,0)]= [(x=K)g,(x)dx = [ (€77 =K)p(»)dv ,

(nK-A)/ o



where gy(.) and ¢(.) are the density functions of ¥,
-2 /2

p(y)= ﬁ

» Then, for a European call option risk-neutral pricing gives

, and X.

C(S,0)=e"TE[£(S,T)]=e """ E[max(S(T)-K,0)] ,
where S(7) 1s a lognormal rv with
E[InS(1)] = In S(?) + (r — o*12)(T—1) , var[InS(T)] = o*(T—0).
» Applying the lemma

E[max(S(T) - K,0)] = elnS(t)+(r—02/2)(T—t)+(o-2/2)(T—t)N(d1) _ KN(dz)
= S()e"""N(d,) - KN(d,), where

ln[elnS(tH(rfo'z/2)(T7t)+(0'2/2)(T7t) /K] n (0'2 /2)(T —t)

d, =
oNT —t
In[S(0)/ K]+ (r+0 1 2)(T ~1)
- oNT -1 ’
dy=d —oT—1.

» The Black-Scholes formula follows.

e Convenient form of Black-Scholes Formula (Ross 2003)
» A convenient way for writing the Black-Sholes formula

follows by recalling that
In S(7) = In(S(0)) + (r — 6*/2)(T—t) +o2(T —1).
» This implies that
C(S,t)=e " PE[max(Se” —K,0)],
where W is a normal random variable with mean

(r —°/2)(T—t) and variance &~ (T—).



e Properties of the Black-Scholes Formula (Ross 2003)
Lemma The call price at time t C(S, T, K, o, t) is
(i) Increasing and convex in the stock price at time t, S;
(ii) Increasing and convex in the strike price, K;
(iii) Increasing in the expiration time, T,
(iv) Increasing in the stock price volatility, c;

(v) Increasing in the risk-free interest rate, r.

» The proof of (i) follows easily from the convenient form,

C(S,t)=e """ "E[max(Se” — K,0)] , since the function

—r(T— w . . . .
e """ max(se” — K,0) is increasing convex in s for all .

» The proof of (ii) is similar.
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