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Chapter 13 Additional Option Topics (1) 
 

• Overview and some History 

 We saw how binomial lattices can be used to price options.  

 Binomial lattices assume discrete state space and time points 

where the stock price can change. 

 Now, we will see how to price options based on a continuous 

geometric Brownian motion model for the stock price. 

 The derivation given here was originated in the seminal 

papers by Black and Scholes (1973) and Merton (1973).1  

 Black, Scholes and Merton work won them the Nobel prize 

in Economics in 1997 (Black passed away before receiving 

the award).  

 This work also fueled interest in finance and contributed to 

the emergence of Financial Engineering.  

 Merton and  Scholes were also among the founders of the 

multi-billion dollars company Long Term Capital 

Management (LTCM) which relied on heavy mathematics 

and fast computers.  

 However, LTCM collapsed due to unexpected events in the 

market. (Guess, Brownian motion didn’t work then!) 
 

                                                 
1 Black, F. and M. Scholes.  The pricing of options and other corporate liabilities. Journal of Political 
Economy 81: 673-654,  637-654, 1973. 
Merton, R. C.  Theory of rational option pricing. Bell Journal of Economics and Management Science 4: 
141-183, 1973.  
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• The Black-Scholes Equation 

Theorem Suppose the stock price follows a geometric 

Brownian motion defined by ( ) ( ) ( )dS t S t dt S t dzµ σ= +  and let r 

be the risk-free interest rate. Then, a derivative security has a 

(no-arbitrage) price f (S, t) (at time t) which satisfies the partial 

differential equation 
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Proof.  We will present the original proof of Black and Sholes 

(1973) (see also Hull 2006).2  It is based on (i) Ito’s lemma; (ii) 

forming a portfolio of the option and the stock in a way that 

eliminates uncertainty; and (iii) equating the portfolio return to 

the risk-free return to avoid arbitrage.  By Ito’s lemma, the 

change in f in a small time interval ∆t is  
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For the stock price,  

                             S S t S zµ σ∆ = ∆ + ∆ ,                                (2)  

and for a risk-free asset (a bond) with price B under continuous 

compounding 

                        B rB t∆ = ∆ .                                            (3) 

Consider a portfolio consisting of shorting one unit of the 

derivative security and buying an amount f
S

∂
∂

 of stocks.   

                                                 
2 Our text (Luenberger) adopts a different approach. 
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The value of this portfolio is ff S
S

∂
Π = − +

∂
. 

The change of the portfolio value in a small time interval ∆t is   
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Note that ∆Π does not involve the random term ∆z.    That is, 

the portfolio is risk-free. Therefore, in order to avoid arbitrage 

the portfolio value must satisfy an equation similar to (3), 
2

2 2
2

ƒ 1 ƒ ƒ
2

r t S t r f S t
t S S

∂ ∂ ∂σ
∂ ∂ ∂

   ∆Π = Π∆ ⇒ − + ∆ = − + ∆   
  

. 

The proof follows upon simplification. █ 
 

• Simple Black-Scholes Equation Verification 

 To see that the Black-Scholes equation makes sense, consider 

some simple cases. 

 If the derivative security is the stock itself, then f (S, t) = S,  
2

2 2
2
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∂ ∂ ∂ (i.e., equation holds).  

 If the derivative security is a bond with value $1 at time 0, 

then f (S, t) = ert, 
2
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 To avoid arbitrage, the price of any derivative security must 

satisfy the Black-Scholes equation (if assumptions hold).  
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• Pricing Securities by Solving the Black-Scholes Equation 

 Determining the price of a derivative security can be done 

using the Black-Scholes equation once appropriate boundary 

conditions are specified. 

 For a European call option maturing at time T and with strike 

price K and price C(S, t) at t, the boundary condition is  

( ,  ) max( ,  0)C S T S K= −  .         

 For a European put option with price P(S, t) at t the boundary 

condition is 

( ,  ) max( ,  0)P S T K S= −  . 

  For an American put option an additional boundary  

condition related to early exercise is required 

( ,  ) max( ,  0)P S t K S≥ −  . 
 

• Perpetual Call 

 This is an American call option with expiration time T = ∞ . 

 Let f(S, t) be the price at time t. Then, f(S, t) satisfies the early 

exercise condition f(S, t) ≥ max(0, S−K). 

 In addition, the call must cost less than the stock price at t,  

f(S, t) ≤ S . 

 The function f(S, t) = S, satisfies both boundary conditions 

and Black-Scholes differential equation. 

 Therefore,  f(S, t) = S (i.e. perpetual value equals stock price).    
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• The Black-Scholes Call Option Formula 

 In the case of a European call option, the Back-Scholes 

differential equation has a closed form solution.  

Theorem  The price at time t of a  European call option with 

strike price K and maturity T on an underlying stock with 

volatility σ  is  
( )

1 2( , ) ( ) ( )r T tC S t SN d Ke N d− −= −  , 

     where S is the stock price at time t, 
2
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= ∫ is the standard Normal cdf.  

 To prove the call option formula, Black and Scholes (1973) 

make the following change of variables  

( )( )

2 2

2

22

2

( , ) ( , ), ( , ) ,

2( , ) ln ( ) ,
2 2

2( , ) ( ) .
2

r t Tf S t e y u S t v s t

Su S t r r t T
K

v S t r t T

σ σ
σ

σ
σ

−=

    
= − − − −    

    

 
= − − − 

 

 

 They then argue that the differential equation reduces to  
2
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2 2( / 2) /( / 2)

0,                                   if  0
( ,0)

1 ,  if 0u r

u
y u

K e uσ σ−

<=   − ≥  
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 Black and Scholes call this differential equation as the “heat-

transfer equation of physics”, and refer to Churchill (1963) 

for a solution.  
 

• Simple Black-Scholes Formula Verification 

 At expiration,  t = T           
( )

1 2 1 2
( )

1 2 1 2

, if ( , ) ( ) ( ) ,     if 
, if ( , ) ( ) ( ) 0 0 0, if 

r T T

r T T

d d S K C S T SN d Ke N d S K S K
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− −
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= = ∞ >  = − = − >
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 For a perpetual call, T = ∞ ⇒ d1 = d2 = ∞  

      ⇒ 1 2( , ) ( ) ( )C S t SN d Ke d S−∞= − = . 
 

• Black-Scholes Formula Interpretation (Sharpe 1999) 

 Similar to the binomial lattice model holding the call option 

is equivalent to holding a replicating portfolio having N(d1) 

stocks and borrowing KN(d2) cash (i.e. shorting KN(d2) of the 

risk-free asset).  

 Note that the replicating portfolio composition is 

continuously changing as the stock price fluctuates and time 

advances.   
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• Risk-Neutral Valuation 

 The variable µ (stock expected rate of return) does not  

appear in the Black-Scholes equation. Therefore, the equation 

is independent of risk preference. 

 The solution to the differential equation is therefore the same  

in a risk-free world as it is in the real world. 

 This leads to the principle of risk-neutral valuation (similar to 

the binomial lattice model).  

 For the geometric Brownian motion model, 

( ) ( ) ( )dS T S T dt S T dzµ σ= + , the stock price at time T > t is 

lognormal with E[S(T)] = S(t)eµ(T−t). 

 In a risk-neutral setting, E[S(T)] = S(t)er(T−t)  . 

 Therefore, the risk-neutral “q-distribution” of the stock price 

is a geometric Brownian motion with an expected rate of 

return r, i.e., ˆ( ) ( ) ( )dS T rS T dt S T dzσ= + , where ẑ is a 

Brownian motion. 

 This implies that in the risk-neutral world the stock price 

distribution at time T is lognormal with parameters  

     E[lnS(T)] = ln S(t) + (r − σ2/2)(T−t) , var[lnS(T)] =σ2T(T−t) .     

 Then, the price of a derivative security with expiration date T 

under risk-neutral pricing (which is the “right” price) is 
( ) ˆ( , ) [ ( , )],r T tf S t e E f S T− −=  

where Ê  denotes the expectation with respect to Ê .  

 



 8

• Simple Risk-Neutral Verification 

 If the derivative security is the stock itself,  f(S,T) = S(T), 
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         where (.)
TSg   is the lognormal density function of S(T). 

 For a derivative security consisting of $1 of cash (risk-free 

asset) at time 0, f(S,T) = erT,  

0

ˆ( ,0) [ ( , )] ( ) 1.
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• Risk-Neutral Derivation of the Black-Scholes Formula 

 We first present the following supporting lemma. This is 

from Hull (2006). 

Lemma If X is a lognormal random variable with 

parameters E[ln(X)] = λ and var[ln(X)] = σ2,  then  
2 / 2

1 2[max( ,0)] ( ) ( )E X K e N d KN dλ σ+− = − , 

where 
2 / 2 2
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σ
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 The proof of this lemma is obtained by using the standard 

change of variable Y = (ln X − λ)/σ, and noting that 
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where gX(.) and (.)ϕ  are the density functions of Y, 
2 / 2

( )
2

yeyϕ
π

−

= , and X.    

 Then, for a European call option risk-neutral pricing gives 
( ) ( )ˆ ˆ( , ) [ ( , )] [max( ( ) , 0)] ,r T t r T tC S t e E f S T e E S T K− − − −= = −  

      where S(T) is a lognormal rv with  

        E[lnS(T)] = ln S(t) + (r − σ2/2)(T−t) , var[lnS(T)] = σ2(T−t).    

 Applying the lemma  
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=
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 The Black-Scholes formula follows.   
 

• Convenient form of Black-Scholes Formula (Ross 2003) 

 A convenient way for writing the Black-Sholes formula 

follows by recalling that  

          ln S(T) = ln(S(0)) + (r − σ2/2)(T−t) + ˆ( )z T tσ − . 

  This implies that  
( )( , ) [max( ,0)] ,r T t WC S t e E Se K− −= −  

  where W is a normal random variable with mean  

  (r −σ2/2)(T−t)  and variance σ2 (T−t).  
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• Properties of the Black-Scholes Formula (Ross 2003) 

Lemma The call price at time t C(S, T, K,σ, t) is 

(i) Increasing and convex in the stock price at time t, S; 

(ii)  Increasing and convex in the strike price, K; 

(iii) Increasing in the expiration time, T; 

(iv) Increasing in the stock price volatility, σ; 

(v) Increasing in the risk-free interest rate, r. 
 

 The proof of (i) follows easily from the convenient form, 
( )( , ) [max( , 0)] ,r T t WC S t e E Se K− −= −  since the function 

e−r(T−t) max(seW − K,0) is increasing convex in s for all W. 

 The proof of (ii) is similar. 

     


