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Probability Primer1 
 

• Sample space and Events  

 Suppose that an experiment with an uncertain outcome is 

performed (e.g., rolling a die). 

 While the outcome of the experiment is not known in 

advance, the set of all possible outcomes is known. This set is 

the sample space, Ω. 

 For example, when rolling a die Ω = {1, 2, 3, 4, 5, 6}. When 

tossing a coin, Ω = {H, T}.  When measuring life time of a 

machine (years), Ω = {1, 2, 3, …}. 

 A subset E⊂ Ω is known as an event.  

 For example, when rolling a die, E = {1} is the event that one 

appears.  The subset E = {1, 3, 5} is the event that an odd 

number appears. 
 

• Probability of an event  

 If an experiment is repeated for a number of times which is 

large enough, the fraction of time that event E occurs is the 

probability that event E occurs, P{E}.  

 E.g., when rolling a fair die, P{1} = 1/6, and  P{1, 3, 5} = 

3/6 = 1/2.  When tossing a fair coin, P{H} = P{T} = 1/2.    

 
                                                 
1 Compiled from S. M. Ross, Introduction to Probability Models, 6th Edition, Academic Press, 1997.  
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• Axioms of probability  

(1) For E ⊆ Ω, 0 ≤ P{E} ≤ 1; 

(2) P{ Ω} = 1; 

(3) For events E1, E2, …, Ei, …, with Ei ⊂ Ω, Ei ∩ Ej = ∅, for all   
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• Implications  

  The axioms of probability imply the following results: 

o For E and F ⊂ Ω,  

     P{E “or” F} = P{E ∪ F} = P{E} + P{F} − P{E ∩ F} ;2 

o If E and F are mutually exclusive (i.e., E ∩ F = ∅), then  

    P{E ∪ F} = P{E} + P{F}; 

o  For E ⊂ Ω, let Ec be the complement of E (i.e., E ∪ Ec = Ω),   

     P{Ec} = 1 − P{E}; 

o   P{∅} = 0. 
 

• Conditional probability  

 The probability that event E occurs given that event F has 

already occurred is  
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 E.g., when rolling two fair dice, suppose the first die is 3, 

what is the probability the sum of the two dice is 7?   

                                                 
2 P{E ∩ F} = P{E “and” F} . 
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 Let E be the event that the sum of the two dice is 7,                 

E = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}, and F be the 

event that the first die is 3, F= {(3, 1), (3, 2), (3, 3), (3, 4),  

(3, 5), (3, 6)}.  Then,    

 

{ } {(3, 4)}{ | }
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• Independent events  

 For E and F ⊂ Ω, P{E ∩ F} = P{E|F}P{F} . 

 Two events are independent if an only if                             

P{E ∩ F} = P{E}P{F}.  That is, P{E|F} = P{E} .       
           

• Random variables  

 Consider a function that assigns real numbers to events 

(outcomes) in Ω.  Such real-valued function is a random 

variable. 

 E.g., when rolling two fair dice, define X as the sum of the 

two dice. Then, X is a random variable with P{X = 2} = 

P{(1,1)}=1/36, P{X = 3} = P{(1, 2), (2, 1)}=2/36=1/18, etc. 

 E.g., the salvage value of a machine, S, is $1,500 if the 

market goes up (with probability 0.4) and $1,000 if the 

market goes down (with probability 0.6).  Then, S is a 

random variable with   P{S = 1500} = 0.4 and P{S = 1000} = 

0.6 . 
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 If a random variable can take on a limited number of values. 

Then, this is a discrete random variable.  E.g., the random 

variable X representing the sum of two dice. 

 If the random variable can take on an uncountable number of 

values.  Then, this is a continuous random variable.  E.g., the 

random variable H representing height of an AUB student. 

 If X is a discrete random variable, the function                   

fX(x) = P{X = x} is the probability mass function (pmf) of X . 

 The function FX(x) = P{X ≤ x} = ( )
i

X i
x x

f x
≤

∑  is the cumulative 

distribution function (CDF) of X.  

 CDF is sometimes simply referred to as distribution function. 

 E.g., for the random variable S representing salvage value of 

a machine above, 
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 For a continuous random variable, the CDF is defined based 

on a function, fX(x),the probability density function (pdf),  
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• Independent Random variables 

  Two random variables X and Y are said to be independent if  
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• Expectation of a random variable 

 The expectation of a discrete random variable X is   
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 The expectation of a continuous random variable X is   
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 The expectation of a random variable is the value obtained if 

the underlying experience is repeated for a number of times 

which is large enough and the resulting values are averaged. 

 The expectation is “linear.”  That is, for two random 

variables X and Y, E[aX + bY] = aE[X] + bE[Y] . 
 

• Measures of variability  

 The variance of a discrete random variable X is   

     ( )222Var[ ] [( [ ]) ] ( ) [ ]
i
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 The variance of a continuous random variable X is   
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 The standard deviation of a random variable X is 

Var[ ]X Xσ =  . 

 The coefficient of variation of a random variable X is CV[X] 

= σX/E[X] .  
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 The variance (standard deviation) measures the spread of the 

random variable around the expectation.  

 The coefficient of variation is useful when comparing the 

variability of different alternatives.  

 Note that Var[aX] =a2 Var[X], for any real number a and 

random variable a . 
 

• Joint distribution  

 The joint distribution function of two random variables is  

, ( , ) { , }.X YF x y P X x Y y= ≤ ≤  

 If X and Y are discrete random variables then,   
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     where fX,Y (.) is the joint pmf of X and Y.  

  If X and Y are continuous random variables then,   
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       where fX,Y (.) is the joint pdf of X and Y.  

Fact.  , ( , ) ( ) ( )X Y X YF x y F x F y=  if and only if (iff) X and Y 

are independent. 
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• Covariance  

 The covariance measures the dependence of two random 

variables.  For two random variables X and Y,  

Cov[ , ] [( [ ])( [ ])]
                          [ ] [ ] [ ] ,
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 If σXY > 0 (<0), X and Y are said to be positively (negatively) 

correlated. 

 σXY = 0 iff X and Y are independent. 

 The coefficient of correlation is defined as .XY
XY

X Y

σρ
σ σ

=  

 Note that 1XYρ ≤ . 

 Note that Var[ ] Var[ ] 2Cov[ , ] Var[ ]X Y X X Y Y+ = + +  . 

 If X and Y are independent, Var[X+Y] = Var[X] + Var[Y]. 
 

• The Normal Random Variable 

 We say that a random variable X is a normal rv with 

parameters μ and σ > 0 if  it has the following pdf: 
2 2( ) /(2 )

( ) , ( , ) .
2

x

X
ef x x

μ σ

πσ

− −

= ∈ −∞ ∞   



 8

5 0 5 10 15
0

0.05

0.1

0.15

fX x( )

x  
 

 Note that fX(x) defines a pdf.  With a change of variable         

z = (x − μ)/σ and using the fact that
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 It can be also shown by doing the appropriate integration that 

E[X] = μ and Var[X] = σ .   

 The normal rv is a good model for quantities that can be seen 

as sums or averages of a large number of rv’s. 

 The cdf of X, ( ) ( ) ,
x

X XF x f t dt
−∞

= ∫  has no closed-form. 

Fact. If X is a normal rv, then Z = (X − μ)/σ is a “standard 

normal r.v.” with parameters 0 and 1. 

 The cdf of X, FX(x), is then evaluates through the cdf of Z, 

FZ(z), which is often tabulated, as  

{ } { } ( )X Z
x xP X x P Z F x Fμ μ

σ σ
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