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Continuous-Time Markov Chains

e Definition and Connection to the Exponential Distribution

» A continuous-time stochastic process {X(¢), > 0} taking on
positive integers is said to be a continuous-time Markov
chain (CTMC) if for all s, £ >0, i, j, k, integers, 0 < u <,
P{X(t+s)=j|X(s)=i,X(w)=k}=P{X({t+s)=j]| X(s)=1i} .

» If, in addition, these transition probabilities are independent
of s, the CTMC is said to have stationary or homogenous
transition probabilities. We only consider this kind of CTMC.

» Let T; be the amount spent in state i before making a
transition to another state. Then,

P{T >s+t|T >s}=P{X({t+s)=i| X(s)=1i}
=P{X()=i| X(0)=i}=P{T, >1}.

» Therefore, T; has the memoryless property.

» It follows that T; is exponentially distributed.

» Let v; be the “rate” of transition out of i (i.e., E[T;] = 1/v)).

> Define also P; as the probability that the process enters j after
transitioning out of i. By definition,

P =0,

> =1,
=0

» The parameters v; and P; completely define the CTMC.



e Example 1

» Consider a shoeshine shop consisting of two chairs. A
customer arrives and set in chair 1, where his shoes are
cleaned and polish is applied, and then moves to chair 2
where his shoes is buffed. Suppose that customers inter-
arrival times are i1d exponential rvs with rate A, and that
service times at chair i are 11d exponential rvs with rate ;,
i =1, 2. Suppose that a customer will enter the shop only if
both chairs are empty.

» This is a CTMC with three states: 0 (both chairs are empty),
1 (a customer is in chair 1), and 2 (a customer is in chair 2).
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» In this case, V():ﬂ., V1= U, Vo = L, P01 :P12:P20: 1, and
P; = 0, otherwise.

» What if a customer would enter if only chair 1 is empty?

» Add two states: 3 (both chairs busy) and 4 (chair 1 waiting).




e Birth-Death Processes

» Consider a stochastic process {X(¢), t > 0} representing the
number of people in a population.

» Suppose that whenever there are n people in a system, the
time for the next arrival 1s exponential with rate 4,,, and the
time of the next departure is exponential with rate u, .

» When a departure (arrival) happens in state 7, the system
moves to state n—1 (n+1).

» The process X(¢) is called a birth-death process.

» It is a special case of a CTMC with

vo = Ao, Po1 =1,
Vi=Ai+ ty Prinn = A /(A + 1), Py = 1 /(A + 1), i >0,

» If1,=0,i=1,2, ..., X,1s called a pure birth process.
» If1,=0,i=0,1,2, ..., X; is called a pure death process.

e Example 2
» A pure birth process with 4,=A4,i=0,1,2, ..., is a Poisson
process. This is the most popular models for arrival

processes (where the inter-arrival times are exponential rvs).



e Example 3

» A pure birth process with 4, =i4,i=0,1,2, ..., is called a
Yule process. This is a model for a population where every
person gives birth at a rate A, independent of others, and no

one dies.

e Example 4

» Consider a system with a single server. Customers arrive to
the system according to a Poisson process with rate
A customers per hour. Customers who find the server busy
wait in line, and those who find the server idle start service
immediately. Service times are iid exponential rvs with rate

L customers per hour.
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» This is a queueing model known as the M/M/1 queue.
» It is also a birth-death model with 4, =4, and x; =4,
i=0,1,2, ...



e o(h) Functions
» A function f{(k) is said to be o(h) if
limf(—h) =0.

h—0 h
> E.g. fih)=h',n>1,is o(h) since lim f(h)/h=limh"" =0.

> But f{h) = h, is not o(h) since lim f(h)/h=limh/h=1.

h—0

e Properties of Transition Probabilities
» Consider a CTMC {X(¢), t >0}. Denote the transition
probability from state 7 to state j within time ¢ by P;(?). L.e.,
F () =P{X(t+s)=j|X(s)=1}.

> Let g; = v;P; be the transition rate from state i to state ;.

Lemma 1 The transition probabilities satisfy the following:

liml_Bf(h) =V,
h—0 h
P.(h)
. dy(n)
EE& o 9 -

Proof. Note that

P(h)y=P{T >ht=e"" =1-vh+vhi’/2=v} /6+...=1—=vh+o(h),

which implies that 1-F, (%) =v,A+o(h). In addition,
P(h)=(~P,(h)P, =v,Ph+o(h)=g,h+o(h). |

it



Lemma 2 (Chapman-Kolmogorov equations)

B(t+h)=Y PR, (h).

Proof. Follows by conditioning on the state the process is in at

time ¢, similar to the discrete case. ||

Theorem 1 (Kolmogorov’s forward equations) P;(?) satisfy

the following differential equation:

oP, (1
- :quj'gk(t)_vj%(t)'
ot k#j

Proof. Lemma 2 implies that

B+ =B (1) =Y. BUOP, ()~ B ()= 3. P ()R, ())— (1= P, ()P (1

k#j

P.(t+h)—P.(t
= lim ”( ) ”()

h—0 h h—0

k#j

Lemma 1 then completes the proof. [

Pure Birth and Poisson Process Transition Probabilities
» For a pure birth process, Kolmogorov’s forward equations

can be written as
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» These differential equations have the following solution.

P()=e"

b

t
P(t)=2;,e [P (s)ds, j>i.

0

» In particular, for a Poisson process, we have A4, = A. Then,

(1) = e
Eﬁiﬂ (t) — ieltj.else/lsds — (/It)efﬂt
0
t 2
P, ()=2e" _[ e” (As)e “ds = (ZTt)e_i’
0
_ ('
B,Hk (t) - k' €

» That is, the probability of having k arrival during a time

period of length ¢ is a Poisson random variable with mean Az .

e Alternate definition and Properties of a Poisson Process
» A continuous-time stochastic process {N(), ¢ > 0}counting
the number of certain events (e.g. arrivals) by time ¢ is said to
be a Poisson process with rate 4> 0, if
(@) N(0)=0.
(i) N(t) has independent increments: The number of events
that occurs in disjoint time intervals are independent.
(iif) The number of events that occur in a time interval of

length ¢ 1s Poisson distributed with mean A¢ .



» Obviously, since N(f) counts the number of events, then N(7)
takes on nonnegative integer values and N(¢) > N(s) for ¢ > s .

» Because a Poisson process is also a pure birth process with
birth rates all equal to A, the inter-event time is exponentially
distributed with mean 1/ .

» Suppose each event in a Poisson process, N(¢), with rate 4
can be classified into type [ w.p. p and type Il w.p. 1—p.

» Then, the number of type I and type II, N,(¢) and N,(¢) are
independent Poisson processes with rates Ap and A(/—p).

» This is the decomposition property of the Poisson process.

e Example 5
» Suppose cars arrive to gas station according to a Poisson
process with rate 5 per hour.
» What is the probability that 3 cars arrive in an hour?
» Number of cars in an hour, N(1), is Poisson distributed with
mean 5. Then,
P{N(1)=3} =¢(5)/3!=0.14 .
» What is the probability that 2 cars arrive in 15 minutes?
» Number of cars in an 15 minutes, N(1/4), is Poisson
distributed with mean 5/4 =. Then,
P{N(1/4) =2} = ¢ *(5/4)*/2! = 0.224.
» What is the expected time before that the third car in an hour

arrives?



» Inter-arrival times are exponential with mean 1/5 hours.
Then, the expected time till third is 3/5 hours = 36 minutes.
» What is the probability that the station, starting empty, has no
cars for 30 minutes after opening?
» Let 4 be the inter-arrival time. 4 is exponential with mean
1/5 hours. The desired probability is
P{4>1/2} =¢ *=0.082.

e Example 6

» Customers arrive to a system according to a Poisson process
with rate A and if each customer is a man w.p. 0.5 and a
woman w.p. 0.5.

» Characterize the arrival process of men into the system.

» It’s a Poisson process with rate 0.54 .

e Example 7

» Cars arrive to an intersection according to a Poisson process
with rate 4. A policeman blocks one way and directs the
cars to the other way. On average, the policeman directs half
of the cars to street A and the other half to street B.

» Characterize the arrival process of cars into street A. Is it
Poisson?

» It’s not a Poisson process.



e Limiting Probabilities
» Similar to the discrete cases, we define limiting probabilities
for a CTMC as
P, =lim P,(0).

» Similar to the discrete case also, these probabilities can be
interpreted as the long-run fraction of time spent in state ; .

» The limiting probabilities exist under the following
conditions: (7) all states communicate; and (i1) all states are
positive recurrent meaning that the expected time to return to
a state upon leaving it is finite.

» Assuming that the limiting probabilities exist, they can be
determined by Kolmogorov’s equations (Theorem 1).

» Letting t — oo in Theorem 1, implies that

RO -
lim === g, lim P (0)~v, im ()= 0= 3 g, B, ~v,,

o Ot k#j k#j

» Therefore,

v, P = Z Ly

k#j
» This equation has an interesting and useful interpretation.

The left hand side, v;P;, is the flow out of state j, and the right

hand side, qujpk , is the flow into state j .

k#j

» This is a flow balance equation (flow out = flow in).
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e Example 8
» For the shoeshine shop of Example 1. What is the fraction of
time that the shop is busy?

» The desired probability is P; + P, or 1 —P,, where the
limiting probabilities are given by the following flow balance
equations:

State 0: AP, = 1P,
State 1: 1 Pi= AP,
State 2: 1P, = 11P4
Therefore, P, = (A/1y)Py , P, = (A/ )P, . Noting that
Pyt+P+P, =1 implies that Py = 1/[1 + (/1) + (/)] , and
the desired probability is

1 =Py =[(A/ ) + (V)] / [1 + (A ) + (V1)) -

e Limiting Probabilities for a Birth-Death Process
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» The flow balance equations are
State 0: APy = 1P,
State 1: uy P, + L1P1= APy + P>
State 2: pPr + HLP,= AP, + 15P;
State n > 2: 14,P, + A,P,= A1 Py + i1 P
» Replacing the first equation in the second gives A, P;= 1P, .
» Replacing this in the third equation gives 1,P,= 15P; .
» Continuing in this manner we find that

ﬂnPn: lun+an+l , = 0

» Then,
R=fp, p=fp-thp pofp tihp
A, A, Hy Hy M A H 1y
» And in general,
P — ﬂ‘n—lﬂ“n—z e ﬂ“lﬂ“o P
n 0 -
/un/un—l ce ILIZILII
> Since 2.5 =1, it follows that
n=0
-1
P :[sznlznz...uoj |
n=l My g - o
-1
p = fai i (sznlznz...m()) el
Hy -+ Fo By n=t Myt - Fo

» A necessary condition for the existence of P,s is
i ﬂ“n—lﬂn—Z . Z’IZO < o0
n=1 /Llnll’ln—] s lLlZILll

12



