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Queueing Theory (3) 
   

•   The M/M/c/K queue 

 This is a generalization of M/M/1/K to many servers. 

Specifically, this is a Markovian queue with c servers and    

K − c waiting spaces (where K > c).  

 The number of customers in the M/M/c/K system, L(t), is a 

birth death process with states 0, 1, 2, …, ,K,  and  
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 Let a = λ/μ, and ρ = a/c. Applying birth-death flow balance 

equation gives 
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 The effective arrival rate is (1 )e KPλ λ= − .  Other measures 

of performance are found as follows.  
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•   Example 10 
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 How many more operators should Sea Beginnings needs 

mean delay down while maintaining a “rejection” 

probability of 1%.   

 Consider adding two servers.  The resulting M/M/2/100 

system has λ = μ = 60, a = 1, and ρ = 0.5. 

 Then,  
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 But obviously here, there are more lines than needed.  In 

your HW, you will determine the minimum number of 

operators and lines that achieve the desired service level. 
 

 

•   The M/M/c/c Erlang loss model  
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 This a special case of M/M/c/K with K = c. 

 That is, there is no waiting.  Incoming customers that find 

all servers busy leave the system. 
 

 

   

 

     

 
 

 

 Applying the formulas for M/M/c/K with K = c,  
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 In particular, Erlang’s loss formula is 
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 Note that B(c,a) = P{all servers are busy}  

                               = P{an arrival will be rejected} . 

 Erlang, a Swedish engineer, developed this model for a 

simple telephone network.  

 This is considered the first application of queueing theory. 
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 An interesting feature of the Erlang loss model is that the 

system size distribution formula, holds for any service time 

distribution.  

 That is, for an M/G/c/c system  
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 That is, Pn is insensitive to service time variability.  It only 

depends on the mean service time E[S]. (More specifically 

on a = λ E[S]).   
 

•   Example 11 

 What is the minimal number of servers needed, in an 

M/M/c/c  Erlang loss system, to handle an offered load        

a = λ/µ = 2 erlangs, with a loss no higher than 2%? 

 Starting with c = 1, increase c until B(c, a) < 0.02. 

c B(c, 2) 
1 2/3 
2 2/5 
3 4/19 
4 2/21 ≈ 0.095 
5 4/109  ≈ 0.095 
6 4/381 ≈ 0.01  

 

 Therefore, 6 servers are needed to achieve the desired 

service level. 
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•   The M/M/∞ unlimited service model  

 This is an M/M/c queue with an infinite number of servers. 

 

   

 

     

 

 It applies for example to a self-service situation.   

 The number of customers in the M/M/∞ system L(t) is a 

birth-death process with λn =λ, and μn =nμ, n =0,1,2, … 

 Applying the birth-death flaw balance equations gives 
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 That is, the number of busy servers is a Poisson random 

variable with mean a = λ/μ.  

 It can be shown that this Poisson distribution is insensitive 

to service times variability.  That is, it holds for M/G/∞ 

queue. 

 Note that the mean number of busy servers is a. 
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•  Example 12 

 Television station KCAD in a large metropolitan area 

wishes to know the average number of viewers it can expect 

on a Saturday evening prime-time program.  It has found 

from past surveys that people turning on their television sets 

on Saturday evening during prime time can be described 

rather well by a Poisson distribution with a mean of 

100,000/hour.  There are five major TV stations in the area, 

and it is believed that a given person chooses among these 

essentially at random.  Surveys have also showed that a 

person tunes in for an average time of 90 minutes.   

 This can be modeled as an M/G/∞ with λ = 100,000 /5         

= 20,000 persons/hour and μ = 1/(3/2) = 2/3.  Then, the 

mean number of viewers is a = λ/μ⎯= 30,000.  

 What is the standard deviation of the number of viewers? 

 The standard deviation is 30000 173.2a = = . 

 


