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Queueing Theory (1) 

• What is a queueing system? 

 A queueing system consists of “servers” (resources) that 

provide service to “customers” (entities).  

 A Customer requesting service will start service if the 

required server is not busy.  Otherwise, the customer waits 

in queue until the server is available. 

 Queueing (waiting in line) happens because there are not 

enough resources at certain times. 
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• Components of a queueing System 

  A queuing system can be composed of one or many service 

centers or nodes.  Customers are “routed” from one node to 

the other according to certain rules. 

 Each node is characterized by three components. 

(i)  The arrival process ; 

(ii)  The service process ; 

(iii)  The queue discipline . 

 The arrival process is specified through the random 

variables  A1, A2, …, where Ai is the inter-arrival time 

between the (i − 1)st and the ith customer.  

 A typical modeling assumption is to assume that Ai’s are 

independent and identically distributed (iid). Then, the 

arrival process is characterized by FA(x) = P{A < x}, the cdf 

of A.  

 Important parameters of the arrival process (in addition to 

FA(.)) are the mean inter-arrival time E[A], and the arrival 

rate λ = 1 /E[A], the arrival rate.  

 The most commonly assumed arrival process is the Poisson 

process. 

 This assumption is realistic (in most cases). In addition, it 

greatly simplifies the analysis. 
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 The service process is specified through the random 

variables  S1, S2, …, where Si is the service time the ith 

customer. 

 The Si are also typically assumed iid with cdf FS(x).  

 Important parameters of the arrival process are the mean 

service time E[S] and the service rate E[S] = 1/µ .  

  Service times are also commonly assumed to be 

exponential.  

 Analytical methods that analyze queues are quite complex 

without the exponential assumption. 

 The queueing or service discipline refers to the rule utilized 

to select the next customer from the queue when a customer 

finishes service.  

 Typical queueing discipline include first-in, first-out 

(FIFO), last-in, first out (LIFO), processor sharing (PS), 

service in random order (SIRO), and priority (PR). 

 Under the iid assumptions, a single-node queueing system is 

generally denoted by GI/GI/c, where the “GI” refers to iid 

arrival and service processes and c is the number of servers.  

 If the inter-arrival and service times are iid exponential then 

the queue is denoted by M/M/c, where the “M” refers to the 

Markovian or memoryless property of the exponential 

distribution.   
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•  Performance measures and general relations 

 Consider a GI/GI/c queue (to simplify things). 

 In the following we define “steady state” measures, which 

are statistical measures after the system has been operational 

for a time which is large enough . 

 An important measure is the traffic intensity, ρ = λ/(cµ). 

 If ρ ≥ 1, then it can be shown that the queue length will 

increase indefinitely as time passes. 

 In “stable” systems, ρ < 1. 

 For a single-server system, ρ is the mean server utilization.  

 The stationary system size distribution is  

lim { ( ) }n tP P L t n→∞= = , 

   where L(t) is the number of customers in the system at time t. 

 The mean number in the system is 
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 It can be shown that L can be estimated differently as   
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 The mean waiting time in the system is  

 

      where Wi is the waiting time of customer i in queue plus  

      the time the customer spend in service.   

 Among the most important queueing theory results is  
Little’s law  

.L Wλ=  
 Other measures concern waiting in queue.  

 The mean number in the  queue is    

0
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      where Lq(s) is the number of customers in queue at time s. 
 

 Lq can be also written as 
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 The mean waiting time in the queue (or the mean delay) is  
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      where i
qW is the waiting time of customer i in queue plus  

      the time the customer spends in service. 

 Little’s law implies that  

Lq = λWq . 

 Furthermore, W and Wq are related by  

                   W = Wq + 1/µ .                                     

 Multiplying by λ and applying Little’s law we get  

                  L = Lq + λ/µ .                                      

 Here, λ/µ can be seen as the mean number of busy servers.  

(This can in fact be also proven by Little’s law.)  

 Note that knowing one of the four performance measures, L, 

W, Lq, and Wq, allows determining the other three. 
 

•  The M/M/1 queue  

 Consider a single-server queue with iid exponential inter-

arrival and service times (hence called M/M/1). 

 Let λ and µ denote the arrival and service rates and ρ = λ/µ . 

     Assume ρ < 1. 

 λ  
µ  
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 The number of customers in the M/M/1 system L(t) is a birth 

death process with λi =λ, and µi =µ, with the following 

transition probability diagram:   
 

 

 

 
 

 Recall that ρ = λ / µ is the traffic intensity. 

 ρ  can be also seen as the average server utilization, or the 

fraction of time the server is busy. 

 Applying the general flow balance equation for a birth-death 

process, the limiting probabilities are given by     
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 Note that 
1
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< ∞∑  only if ρ < 1 or equivalently λ < µ.  

 This is the stability condition that should be always satisfies 

in order for the M/M/1 queue to have a finite congestion 

level (measured in L, W, Wq, etc). 
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 P0 could be found in another way by noting that   

    P0 = P{server is idle} = 1 − P{server is busy} = 1−ρ . 

 The mean number in the system, L, is    
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 Other performance measures are determined as follows: 
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 Another measure of performance is the probability that the 

number of customers in the system is n or more 
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•  Example 1  

 Customers arrive at a bank according to a Poisson process 

with rate 9 customers per hour and request service of a 

single teller.  The teller has an exponential service time with 

rate 10 customers per hour.  

 What is the fraction of time the teller is busy? 

 This can be modeled as a M/M/1 with λ = 9 customers/hour 

and µ = 10 customers/hour.  
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 The traffic intensity is ρ = 9/10 = 0.9, which is also the 

fraction of time the server is busy. 

 What is the mean number of customers in the bank?  

L = ρ / (1−ρ) = 0.9/0.1 = 9 customers. 

 What is the mean number of customers waiting in line?  

Lq =  L − ρ = 9 − 0.9  =  8.1 customers. 

 What is the mean time a customer spends in the bank? 

W = L / λ = 9 / 9 = 1 hour. 

 What is the mean delay in queue?  

Wq = Lq / λ = 8.1 / 9 = 0.9 hour = 54 mins. 

 For what fraction of time the number of customers in the 

system exceeds 3? 

P4+ = ρ 4  = 0.94 = 0.656 .    

 What do you think of this system performance?  

 Not good. Mean delay time is too long. 

 How would you improve the performance? 

 Add one or more servers, or train the teller (if possible) so 

she handles customers fasters (i.e. increase µ). 

 What other measures of performance would you estimate? 

 P{waiting time > t } < α, where α is small. 
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•  Beware of the nonlinear behavior of queues! 
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 For example, if ρ is increased from 0.9 to 0.945 (by 5%) in 

the bank example, L increases from 9 to 17.18 (by about 

100%).  

   

 
 


