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Continuous-Time Markov Chains  
 

• Definition and Connection to the Exponential Distribution 

 A continuous-time stochastic process {X(t), t ≥ 0} taking on 

positive integers is said to be a continuous-time Markov 

chain (CTMC) if for all s, t ≥ 0, i, j, ku integers, 0 ≤ u < s,  

{ ( ) | ( ) , ( ) } { ( ) | ( ) }uP X t s j X s i X u k P X t s j X s i+ = = = = + = =  . 

 If, in addition, these transition probabilities are independent 

of s, the CTMC is said to have stationary or homogenous 

transition probabilities. We only consider this kind of CTMC. 

 Let Ti be the amount spent in state i before making a 

transition to another state. Then, 

{ | } { ( ) | ( ) }
                             { ( ) | (0) } { }.
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P T s t T s P X t s i X s i
P X t i X i P T t

> + > = + = =
= = = = >  

 Therefore, Ti has the memoryless property.  

 It follows that Ti is exponentially distributed.   

 Let vi be the “rate” of transition out of i (i.e., E[Ti] = 1/vi). 

 Define also Pij as the probability that the process enters j after 

transitioning out of i. By definition,    
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 The parameters vi and Pij completely define the CTMC.  
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• Example 1 

 Consider a shoeshine shop consisting of two chairs.  A 

customer arrives and set in chair 1, where his shoes are 

cleaned and polish is applied, and then moves to chair 2 

where his shoes is buffed. Suppose that customers inter-

arrival times are iid exponential rvs with rate λ, and that 

service times at chair i are iid exponential rvs with rate µi,      

i = 1 , 2. Suppose that a customer will enter the shop only if 

both chairs are empty. 

 This is a CTMC with three states: 0 (both chairs are empty), 

1 (a customer is in chair 1), and 2 (a customer is in chair 2). 
 

 

 

   

 In this case, v0 = λ, v1 = µ1, v2 = µ2, P01 = P12 = P20 = 1, and 

Pij = 0, otherwise.  

 What if a customer would enter if only chair 1 is empty? 

 Add two states: 3 (both chairs busy) and 4 (chair 1 waiting). 
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• Birth-Death Processes 

 Consider a stochastic process {X(t), t ≥ 0} representing the 

number of people in a population. 

 Suppose that whenever there are n people in a system, the 

time for the next arrival is exponential with rate λn , and the 

time of the next departure is exponential with rate µn . 

 When a departure (arrival) happens in state n, the system 

moves to state n−1 (n+1). 

  The process X(t) is called a birth-death process.  

 It is a special case of a CTMC with  

      v0 = λ0, P01 =1,                 

       vi = λi + µi, Pi,i+1 = λi / (λi + µi), Pi,i−1 = µi / (λi + µi), i > 0 . 
 

 

 

 
 

 If µi = 0, i = 1,2, …, Xt is called a pure birth process. 

 If λi = 0, i = 0,1,2, …, Xt is called a pure death process. 
 

• Example 2 

 A pure birth process with λi =λ, i = 0,1,2, …, is a Poisson 

process.  This is the most popular models for arrival 

processes (where the inter-arrival times are exponential rvs). 
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• Example 3 

 A pure birth process with λi =iλ, i = 0,1,2, …, is called a 

Yule process.  This is a model for a population where every 

person gives birth at a rate λ, independent of others, and no 

one dies. 
 

• Example 4 

 Consider a system with a single server. Customers arrive to 

the system according to a Poisson process with rate 

λ customers per hour. Customers who find the server busy 

wait in line, and those who find the server idle start service 

immediately. Service times are iid exponential rvs with rate 

µ customers per hour.  

 

 
 

 This is a queueing model known as the M/M/1 queue. 

 It is also a birth-death model with λi =λ, and µi =µ,  

      i = 0,1,2, … 
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• o(h) Functions 

 A function f(h) is said to be o(h) if  

0

( )lim 0 .
h

f h
h→

=  

 E.g. f(h) = hn, n > 1, is o(h) since 1

0 0
lim ( ) / lim 0.n

h h
f h h h −

→ →
= =   

 But f(h) = h, is not o(h) since 
0 0

lim ( ) / lim / 1.
h h

f h h h h
→ →

= =  
 

• Properties of Transition Probabilities  

 Consider a CTMC {X(t), t ≥0}. Denote the transition 

probability from state i to state j within time t by Pij(t). I.e., 

( ) { ( ) | ( ) }.ijP t P X t s j X s i= + = =  

 Let qij = viPij be the transition rate from state i to state j.  
 

Lemma 1 The transition probabilities satisfy the following: 
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Proof.  Note that  
2 3( ) { } 1 / 2 / 6 1 ( ) ,iv h

ii i i i i iP h P T h e v h v h v h v h o h−= > = = − + − + = − +…
 which implies that 1 ( ) ( ).ii iP h v h o h− = +  In addition,   

( ) (1 ( )) ( ) ( ) .ij ii ij i ij ijP h P h P v P h o h q h o h= − = + = +    █ 
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Lemma 2 (Chapman-Kolmogorov equations)  

0
( ) ( ) ( ) .ij ik kj

k
P t h P t P h

∞

=
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Proof.  Follows by conditioning on the state the process is in at 

time t, similar to the discrete case. █ 
 

Theorem 1 (Kolmogorov’s forward equations) Pij(t) satisfy 

the following differential equation: 
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( ) ( ) .ij
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k j
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q P t v P t

t ≠

∂
= −
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Proof.  Lemma 2 implies that    
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Lemma 1 then completes the proof.  █ 
 

• Pure Birth and Poisson Process Transition Probabilities 

 For a pure birth process, Kolmogorov’s forward equations 

can be written as 
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 These differential equations have the following solution.  

1 , 1
0

( ) ,

( ) ( ) , .

i

j j

t
ii

t
t s

ij j i j

P t e

P t e e P s ds j i

λ

λ λλ

−

−
− −

=

= >∫  

 In particular, for a Poisson process, we have λi = λ.  Then, 
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 That is, the probability of having k arrival during a time 

period of length t is a Poisson random variable with mean λt . 
 

• Alternate definition and Properties of a Poisson Process 

 A continuous-time stochastic process {N(t), t ≥ 0}counting 

the number of certain events (e.g. arrivals) by time t is said to 

be a Poisson process with rate λ > 0, if  

(i) N(0) = 0 .  

(ii) N(t) has independent increments: The number of events   

      that occurs in disjoint time intervals are independent.  

(iii) The number of events that occur in a time interval of         

        length t is Poisson distributed with mean λt . 
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 Obviously, since N(t) counts the number of events, then N(t) 

takes on nonnegative integer values and N(t) ≥ N(s) for t > s . 

 Because a Poisson process is also a pure birth process with 

birth rates all equal to λ, the inter-event time is exponentially 

distributed with mean 1/λ . 

 Suppose each event in a Poisson process, N(t), with rate λ 

can be classified into type I w.p. p and type II w.p. 1−p.  

 Then, the number of type I and type II, N1(t) and N2(t) are 

independent Poisson processes with rates λp and λ(1−p). 

 This is the decomposition property of the Poisson process. 
 

• Example 5  

 Suppose cars arrive to gas station according to a Poisson 

process with rate 5 per hour. 

 What is the probability that 3 cars arrive in an hour? 

 Number of cars in an hour, N(1), is Poisson distributed with 

mean 5. Then,  

                       P{N(1) = 3} = e−5(5)3/3! = 0.14 . 

 What is the probability that 2 cars arrive in 15 minutes? 

 Number of cars in an 15 minutes, N(1/4), is Poisson 

distributed with mean 5/4 =. Then,  

                      P{N(1/4) = 2} = e−5/4(5/4)2/2! = 0.224. 

 What is the expected time before that the third car in an hour 

arrives? 
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 Inter-arrival times are exponential with mean 1/5 hours. 

Then, the expected time till third is 3/5 hours = 36 minutes. 

 What is the probability that the station, starting empty, has no 

cars for 30 minutes after opening? 

 Let A be the inter-arrival time. A is exponential with mean 

1/5 hours. The desired probability is   

                                      P{A > 1/2} = e−5/2 = 0.082.   
 

• Example 6 

 Customers arrive to a system according to a Poisson process 

with rate λ and if each customer is a man w.p. 0.5 and a 

woman w.p. 0.5.   

 Characterize the arrival process of men into the system. 

 It’s a Poisson process with rate 0.5λ . 
 

• Example 7 

 Cars arrive to an intersection according to a Poisson process 

with rate λ .  A policeman blocks one way and directs the 

cars to the other way. On average, the policeman directs half 

of the cars to street A and the other half to street B.   

 Characterize the arrival process of cars into street A. Is it 

Poisson? 

 It’s not a Poisson process. 
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• Limiting Probabilities 

 Similar to the discrete cases, we define limiting probabilities 

for a CTMC as  

lim ( )j ijt
P P t

→∞
= . 

 Similar to the discrete case also, these probabilities can be 

interpreted as the long-run fraction of time spent in state j . 

 The limiting probabilities exist under the following 

conditions: (i) all states communicate; and (ii) all states are 

positive recurrent meaning that the expected time to return to 

a state upon leaving it is finite. 

 Assuming that the limiting probabilities exist, they can be 

determined by Kolmogorov’s equations (Theorem 1). 

 Letting t → ∞ in Theorem 1, implies that  

    
( )

lim lim ( ) lim ( ) 0ij
kj ik j ij kj k j jt t tk j k j

P t
q P t v P t q P v P

t→∞ →∞ →∞
≠ ≠

∂
= − ⇒ = −

∂ ∑ ∑  

 Therefore, 

j j kj k
k j

v P q P
≠

= ∑  

 This equation has an interesting and useful interpretation.  

The left hand side, vjPj, is the flow out of state j, and the right 

hand side, kj k
k j

q P
≠
∑ , is the flow into state j . 

 This is a flow balance equation (flow out = flow in). 
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• Example 8 

 For the shoeshine shop of Example 1.  What is the fraction of 

time that the shop is busy? 
 

 

 

   

 The desired probability is P1 + P2 or 1 −P0, where the 

limiting probabilities are given by the following flow balance 

equations: 

State 0:  λP0 = µ2P2 

State 1:  µ1P1= λP0  

State 2:  µ2P2 = µ1P1 

Therefore, P1 = (λ/ µ1)P0 , P2 = (λ/ µ2)P0 . Noting that 

P0+P1+P2 = 1 implies that P0 = 1/[1 + (λ/ µ1) + (λ/ µ2)] , and 

the desired probability is  

1 −P0  = [(λ/ µ1) + (λ/ µ2)] / [1 + (λ/ µ1) + (λ/ µ2)] . 
 

• Limiting Probabilities for a Birth-Death Process 
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 The flow balance equations are  

State 0:  λ0P0 = µ1P1 

State 1:  µ1 P1 + λ1P1= λ0P0 + µ2P2  

State 2:  µ2P2 + λ2P2 = λ1P1 + µ3P3 

State n > 2: µnPn + λnPn = λn−1Pn−1 + µn+1P n+1 

 Replacing the first equation in the second gives λ1P1 =  µ2P2 . 

 Replacing this in the third equation gives  λ2P2 =  µ3P3 . 

 Continuing in this manner we find that  

λnPn =  µn+1Pn+1 , n ≥ 0 

 Then, 
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 A necessary condition for the existence of Pns is  
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