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Inventory Theory (1) 

•   Introduction  

 Most industries have to deal with inventories.  E.g., shelf 

and warehouse (back room) inventory in retail, and raw 

material, work in process and finished product inventory in 

manufacturing.  

 Even services that do not keep physical inventory can treat 

their resources as perishable inventory.  E.g., seats on a 

plane, rooms in a hotel.  

 Proper inventory management is crucial for the success of 

any business.  

 E.g., holding too much inventory involves “tying” large 

capitals, while holding little inventory leads to lost revenue 

and dissatisfied customers. 

 To get an idea of the importance of inventory management, 

note that the capital invested in U.S. inventories was 

estimated to be $1 trillion in 1991. 

 In an inventory system, inventory is depleted by customer 

demand and is replenished from orders to suppliers. 

 The key questions in inventory management are 

o When to order? 

o  How much to order? 
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•   Why hold inventory?  

 To benefit from economies of scale. 

 To cope with demand variability over time. 

 To protect against demand uncertainty. 

 To protect against supply uncertainty. 
 

•   Inventory costs  

 The two key questions of when and how much to order are 

commonly answered based on a cost minimization criteria. 

 There are three types of costs in an inventory system: 

o The cost to place an order. 

o The cost of holding inventory. 

o The penalty cost for unmet demand.  

 The order cost, OC(x), is a function of the order size, x, and 

is generally given as   

0         if 0
( )

if 0
x

OC x
K cx x

=
=  + >

 

 Here K > 0, is the fixed ordering cost which is charged 

every time an order is placed regardless of its size.  

 Costs included in K typically include book-keeping costs 

associated with processing an order, fixed transportation 

costs, and order handling costs.    

 And c is unit variable cost, assumed (for now) independent 

of x.  We’ll see that variable cost can also depend on x.   
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 The holding cost or the inventory carrying cost is the cost 

associated with storage of inventory until it is sold or used.  

  It includes the cost of storage space, insurance, taxes, and 

most importantly, the cost of capital tied up in inventory. 

 Think of the cost of capital as the interest paid to a bank that 

finances purchasing from suppliers.  

 The holding cost is computed function of the amount of 

inventory on hand.   

 It is assessed based on the average on-hand inventory or 

based on inventory level at the end of a certain period. 

 The penalty cost, also known as shortage cost, is the cost of 

not being able to meet customer demand when it occurs.  

 The penalty cost depends on whether the excess demand is 

backordered (also known as backlogged) or lost. 

 In a backorder demand situation, a customer not finding any 

inventory on hand is willing to wait until an order arrives to 

receive his request.   

 In a lost demand situation, a customer not finding any 

inventory on hand, will not wait (and perhaps look for his 

request elsewhere). 

 In reality, there can be a combination of backorder and lost 

sales. 
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•  Estimating Inventory costs  

 The ordering cost is usually easy to estimate. 

 Holding cost is somewhat easy to estimate based on the firm 

cost of capital, which is found as a weighted average of the 

interest rates from different sources of funding.  

 However, estimating the holding cost can be complicated in 

some situations (e.g. when payment to suppliers is delayed). 

 The penalty cost is the most difficult to estimate.  How do 

you measure “loss of customer goodwill”?   

 Because difficulty in its estimation, sometimes a service 

level constraint is used instead of a penalty cost.  
 

•  Characteristics of inventory systems  

  When constructing an inventory model we should specify 

assumptions in the following 10 areas.  

1. Demand: Can be (i) deterministic (known with certainty) 

and constant over time (stationary), (ii) deterministic and 

time varying (dynamic), (iii) probabilistic and stationary, 

or (iv) probabilistic and dynamic.  

2. Lead time:  This is the time until an order arrives.  It can 

be (i) zero (i.e. instantaneous delivery), (ii) non-zero and 

deterministic, or (iii) random. 

 



 5

3. Review time: This defines how often inventory is 

reviewed.  There are two basic variations.  Under 

continuous review, the inventory is monitored 

continuously.  Under periodic review, the inventory is 

checked periodically (e.g. once per day, per week, etc.)  

4. Excess demand:  Could be (i) backordered or (ii) lost. 

5. Planning horizon: This specifies the time interval the 

model considers.  It can be (i) a single period, (ii) a finite 

number of periods, or (iii) an infinite horizon. 

6. Other factors that consume inventory:  E.g., perishable 

inventory (e.g. in case of food inventory), obsolescence 

(e.g. clothing and electronics inventory), etc. 

7. Supply: Supply is often assumed certain (i.e. the amount 

received is equal to the amount ordered).  However, there 

are random supply situations (e.g. due to quality 

problems and human errors). 

8. Location:  Classic inventory models consider inventory at 

a single location.  Other (recent) supply chain 

management-type models consider inventory in many 

locations (e.g., a warehouse and multiple retail outlets). 

9. Number of items: Most inventory models consider a 

single item. Other models consider multiple items 

competing over demand or space.  
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10. Centralized/decentralized decision making:  This defines   

       whether different products and locations are managed by  

        one or more decision makers in a centralized manner. 
  

•  The classic Economic Order Quantity (EOQ) model   

 Consider a facility (e.g., a retailer or a warehouse) that faces 

a constant demand for a single item at a rate D per unit time.  

 Placing an order of size Q > 0 to a supplier costs K+cQ 

dollars, where K and c are the fixed and variable order costs. 

 Holding inventory incurs a unit cost h ($/unit/unit time) 

which is proportional to average inventory level. 

 The lead time until an order is received is zero. 

 No shortages are allowed. 

 The planning horizon is infinite. 

 The objective is to determiner the ordering policy that 

minimizes the cost per unit time (e.g. annual cost). 

 When to order in such a situation? 

 When the inventory level reaches 0 (saves on holding cost).  

Time

D
1
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 In terms of how much to order, it can be shown that it is 

optimal to order in equal quantities.  

 Let Q be the order size. 

 The EOQ policy can be summarized as follows:  

 Whenever the inventory level reaches zero, order Q.   

 Now we can determine the optimal value of Q that 

minimizes cost per unit time. 

 First, we find the cost per ordering cycle with duration        

T = Q/D. 
Inventory

Time

Q

T

D
1

 

 The cost per ordering cycle is the sum of holding and 

ordering cost. 

 Let I(t) be the inventory level at time t.  The holding cost 

per cycle is  

2

0

( ) (area under inventory level) /(2 ) .
T

hI t dt h hQ D= × =∫  
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 The ordering cost per cycle is K + cQ.   

 Then, the cost per ordering cycle is    
2( ) /(2 )TC Q K cQ hQ D= + + . 

 The cost per unit time is     
2( ) /(2 )( ) .

/ 2
T

U
C Q K cQ hQ D D QC Q K cD h

T Q D Q
+ +

= = = + +  

 Differentiating implies that 

2

2

2 3

( ) ,
2
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∂

∂
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∂

 

 Therefore, CU(Q) is convex, and the optimal order quantity 

that minimizes CU(Q), Q*, is found by setting the first 

derivative equal to zero as  

2* .KDQ
h

=  

 The corresponding optimal (minimum cost), CU(Q*) is  

* 2 .UC cD KDh= +  

•  EOQ facts  

 Note that Q* is independent of the variable cost c.  So some 

text books do not include the variable cost in the derivation. 

 The holding cost per unit time could have been derived 

directly as h×(average inventory level) = h×Q/2. 



 9

 The ordering cost per unit time could also be found directly 

as (K + cQ)×(# of orders per unit time) = (K + cQ)(D/Q). 

 The optimal order quantity, Q*, is increasing in the ordering 

cost K.  That is, high ordering cost implies ordering less 

frequently in large quantities. 

 In addition, Q*, is decreasing in the holding cost h.  That is, 

high holding cost implies ordering more frequently in small 

quantities. 

 In fact, Q* explicitly balances ordering and holding cost, 

since  for Q = Q* the holding and fixed ordering costs per 

unit time are equal:  hQ*/2 = KD/Q* . 

 If an order requires a lead time L > 0 to arrive.  Then, the 

optimal policy is to order Q*, L time units before the 

inventory level reaches zero. 

 Specifically, the reorder inventory level is DL if                      

L <  T* = Q*/D.  

 If L > T*, the reorder level is D×(fractional part of L/T*).  

 An important property of EOQ is that the optimal cost, 

CU(Q), is not too sensitive to Q when Q is close to Q*. 

 Specifically, a relative deviation of q from Q* by using an 

order quantity Q′ = (1+q)Q* leads to a relative change of the 

cost per unit time (excluding variable cost) of q2/ [2(1+q)].  
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 For example a deviation of 20% in Q* increase cost by 

0.22/[2(1+0.2)] = 0.017, by less than 2%. 

 This is an important feature in practice when accurate 

estimates of parameters are not available or when the exact 

optimal order quantity cannot be used.         
 

•  Example 1.   

 Consider a three-ohm resistor used in the assembly of an 

automated processor of X-ray films.  The demand for this 

item has been relatively level over time at a rate of 2,400 

units/year.  The unit holding cost of the resistor is          

0.096 $/unit/year, and the fixed ordering cost is $3.2.   

 What is the optimal order quantity and corresponding 

annual cost?  (Ignore variable cost). 

 The optimal order quantity is         

 

2 2 $3.2 2400 units/year* 400 units.
$0.096 unit/year

* 2 2 $3.2 2400 units/yr $0.096 unit/year
      $38.4 / year

U

KDQ
h

C KDh

× ×
= = =

= = × × ×

=
 

 Note that the optimal order quantity involves ordering         

2-month supply of the resistor every two months (since         

T* = Q*/D = 2/12 years = 2 months).  

 Note also that the optimal order cost KD/Q* = $19.2 is 

equal to the optimal holding hQ*/2 = $19.2.   
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 Suppose that it takes a lead time of one week to receive an 

order. How should the resistor be ordered? 

 The optimal policy is to order 400 units when the inventory 

level reaches DL = 2400/52 ≈ 46 units. 

 Suppose the supplier will not deliver below a three-month 

supply of the transistor?  How will this affect the cost? 

 This involves using a Q′  = 3/2 Q* instead of Q*, which will 

increase the annual cost by 0.52/[2(1+0.5)] = 0.083 ≈ 8%.  

 This can be verified by evaluating ( )
2U

D QC Q K h
Q

= + , 

         for Q = 600, which gives CU(600) = $41.6, which is  

                            (41.6 − 38.4)/38.4 = 0.083 = 8.3% 

         above the optimal cost.   

 Finally, it is instructive to plot the annual ordering, holding, 

and total cost on the same graph.   
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•  EOQ model with a finite production rate (EPQ model)   

 In certain systems, especially production systems, the whole 

order quantity is not delivered at the same time.   

 The batch is instead delivered continuously according to a 

certain production rate P per unit time. 

 The economic production quantity model (EPQ) is the EOQ 

model but with orders delivered according to a rate P > D. 

 Adopting an order-at-zero-inventory policy order quantities 

all equal to Q, the inventory over time varies as follows.   
 

Time

Q(1-D/P)

T=Q/D

P-D
1

D
1

Q/P

 

 The time to receive an order is Q/P. During this time the 

inventory level rises from zero to Q − D(Q/P) = Q(1−D/P). 

 Then, it can be shown the average inventory level in an 

ordering cycle is [Q(1−D/P)×T/2]/T = Q(1−D/P)/2. 
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 Note that cycle duration continues to be T = Q/D. 

 Therefore, the expected cost per unit time can be written as  

(1 / )( ) .
2U

D Q D PC Q K cD h
Q

−
= + +  

 The optimal order quantity and cost are derived similar to 

the EOQ model case as   

2* , * 2 (1 / )
(1 / ) U

KDQ C KDh D P
h D P

= = −
− . 

 The optimal order quantity for the EPQ model is less than 

that of the EOQ model because inventory spends less time 

on hand in the EPQ model, which reduces holding cost.  

 As P →∞, Q* converges to the EOQ order quantity.   
 

•  Example 2.   

 Suppose that the resistor in Example 1 is replenished 

according to a production rate of 900 per month.  What are 

the optimal order quantity and annual cost? 

 In this case, P = 800 units/month = 9,600/year.  Then,           

D/P = 1/4, and  

2 2 3.2 2400* 462 units.
(1 / ) 0.096(1 1/ 4)

* 2 (1 / ) 2 3.2 2400 0.096(1 1/ 4)
      $33.3 / year

U

KDQ
h D P

C KDh D P

× ×
= = ≈

− −

= − = × × × −

=
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•  EOQ model with shortages allowed    

 Suppose now that in the EOQ model shortages are allowed 

and backordered.  

 Suppose that the unit backorder cost is π $/unit/unit time. T 

his can be seen as a waiting cost.  

 The idea here that we may be able to save on order costs by 

making some customers wait and ordering less frequently. 

 The shortage cost per unit time is proportional to the 

average backorder level (similar to the holding cost). 

 With a policy that orders in equal amounts, of size Q, the 

problem is to determine the optimal value of Q and of the 

backorder level S at the end of an ordering cycle. 

 The inventory varies as follows over time. 
   

Inventory

Time

Q-S

T=Q/D

S
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 The average inventory level is  
2{( ) [( ) / ] / 2}/ ( ) / 2Q S Q S D T Q S Q− × − = −  . 

 The average backorder level is  
2{ [ / ] / 2}/ / 2S S D T S Q× =  . 

 Therefore, the cost per unit time is   
2 2( )( , ) .

2 2U
D Q S SC Q S K cD h
Q Q Q

π−
= + + +  

 It can be easily shown that CU(Q,S) is convex in S (for a 

fixed value of Q) , since  

2

2

( , ) ( ) ,

( ) 0 .

U

U

C S Q h Q S S
S Q Q

C Q h
S Q

π

π

∂ −
= − +

∂

∂ +
= >

∂

 

 Then, the optimal value of S that minimizes cost for Q fixed, 

is obtained by setting the first derivative equal to zero as   

* .hS Q
hπ

=
+  

 Now the cost “at optimal S” is  
2 2

2 2

{1 [ /( )]} [ /( )]( )
2 2

[ /( )] [ /( )]              
2 2

             
2

U
D Q h h Q h hC Q K cD h
Q

D Q h Q h hK cD h
Q
D Q hK cD
Q h

π ππ

π π ππ

π
π

− + +
= + + +

+ +
= + + +

= + +
+

 



 16

 Therefore, the optimal order quantity is found similar to the 

EOQ model as  

2 2* .
/( )
KD KD hQ

h h h
π

π π π
+

= =
+  

 In addition, the optimal backorder level is  

2* * h KD hS Q
h hπ π π

= =
+ + . 

 The optimal cost is * [ /( )] 2 .UC cD h KDhπ π= + +  

 Note that the optimal order quantity increases relative to the 

EOQ model order quantity as a result of backorders. 

 Note also that as π →∞, Q* converges to the EOQ order 

quantity. 
 

•  Example 3.   

 Suppose that demand resistor in Example 1 can be 

backordered at a cost of $0.5/unit/year.  What are the 

optimal order quantity backorder level and annual cost? 

 Here π = 0.5 and π +h = 0.596. Then,  

         

2 0.596* 400 437 units
0.5

2 2 3.2 2400 0.596*  161 units
0.5 0.5

* [ /( )] 2 (0.5 / 0.596) 38.4 $32.2 .U

KD hQ
h

KD hS
h

C h KDh

π
π

π π
π π

+
= = ≈

× ×
= = ≈

+

= + = × =
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•  EOQ model with quantity discounts   

 Suppose that in the EOQ model the supplier offers a price 

discount for large quantities.  

 Specifically, suppose the unit variable order cost is 

1

2

, if 
( )

, if 
c Q Q

c Q
c Q Q

 <
= 

≥
, 

      where c2 < c1 .  

 In addition, since a major part of the holding cost is related 

to cost of capital (which is proportional to variable cost) the 

holding cost will be of the form1  

1

2

, if 
, if 

h Q Q
h

h Q Q
 <

= 
≥

, 

      where h2 < h1 .  

 The cost per unit time is then given by   

  

1 11

2

2 2

, if 
2( ), if 

( )
( ), if , if 

2

U
U

U

D QK c Q h Q Q
QC Q Q Q

C Q
D QC Q Q Q K c Q h Q Q
Q

 + + < < = = 
≥  + + ≥



 

 Then, the optimal order quantity is either the minimum of 
1 ( )UC Q for Q Q< , Q1, or the minimum of 2 ( )UC Q  for 

Q Q> , Q2, whichever gives the least cost.   

                                                 
1 The common form for the unit holding cost is h = ho+ic, where h0 is the “storage” cost and i is the cost 
of capital. 
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 Since 1 ( )UC Q is convex, then 1 1min( , 2 / )Q Q KD h=    
 

                                                        

 

 

 

 

 

 

 Since 2 ( )UC Q is convex, then 1 2max( , 2 / )Q Q KD h=    
 

                                                        

 

 

 

 

 

 

 Formally, the optimal order quantity is   

1 2

1 2
1 2,

* arg min( ( ), ( ))U UQ Q
Q C Q C Q= . 

 

 

 

Q  

1

2KD
h  

1

2KD
h  

Q  

Q1 Q1 

Q  

2

2KD
h  

2

2KD
h  

Q  

Q2 Q2 

1 ( )UC Q  

2 ( )UC Q  
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•  Example 4   

 Because of convenience in manufacturing and shipping, the 

supplier of an item offers a 2% discount on any order of 100 

units or higher. Demand for this item is estimated at 416 

units per year.  The unit variable cost is $14.2, and the fixed 

cost is $1.50. For this item storage costs are negligible, and 

the unit holding cost is 24% (the cost of capital) of the unit 

variable cost.  

 What are the optimal order quantity and annual cost for the 

item?  

 Here, K = $1.5, c1 = $14.2, and h1 = 0.24×14.2 = $3.41.  In 

addition,  c1 = 0.98×14.2 = $13.92, and h2 = 0.24×13.92 = 

$3.34.  

 Then, 1 min(100, 2 1.5 416 / 3.41) 19Q = × × ≈  units, and  
1

1( ) 2 1.5 416 3.41 14.2 416 $5,972UC Q = × × × + × ≈    

2 max(100, 2 1.5 416 / 3.34) 100Q = × × = , and  

2
2

416 100( ) 1.5 13.92 416 3.34 $5,964
100 2UC Q = × + × + × ≈ . 

 The optimal order quantity is therefore Q* = 100, and the 

corresponding annual cost is $5,964.  

 The annual cost as a function of Q is as shown below. 
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•  Time-varying demand – Wagner-Whitin model   

 Suppose now that demand and costs are time variable. 

 Specifically, suppose the planning horizon is divided into n 

periods, numbered 1, 2,…, n. 

 Demand occurring at the beginning of period t is Dt (E.g., Dt 

can be obtained by a forecast based on last year demands). 

 Let ct be the unit purchasing cost in period t. 

 Let Kt be the fixed setup cost in period t. 

 An order could be placed at the beginning of period t. If an 

order of size Qt is placed, the ordering cost is Kt + ctQt . 

 The deliver lead time of an order is zero. 

 The holding cost is proportional to end of period inventory.  

If period t ends with inventory level It , then the holding cost 

is htIt , where ht is the unit holding cost in period t. 

  Suppose (for now) that the initial inventory is zero. 

 No shortages are allowed. 

Bacel
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 The objective in this model is to determine the ordering 

quantities in every period, Qt, in a way that minimizes cost, 

and meets all demand. 

 Such a time varying (dynamic) demand model is known as 

the Wagner-Whitin model. 

 Wagner and Whitin (1958) proved two key properties of this 

model: 

1. In an optimal policy, an order is placed in period t only if 

the starting inventory in period t is zero. 

2. In an optimal policy, if an order is placed in period t, then 

the order size, Qt, will cover the demand of one or more 

subsequent periods. That is,  

                Qt ∈ {Dt, Dt + Dt+1, Dt + Dt+1+ Dt+2, …., 
n

i
i t

D
=
∑ } .  

 These two properties allow the problem to be solved 

recursively according to the following dynamic program. 

 Let Ct be the (minimum) cost of the best ordering policy 

from period t to period n, starting with zero inventory in 

period t (an order must be placed in period t). 

 Then, Ct can be determined recursively as follows.    

1, 1, , 1
min

j t j t j t

t t t t i t jj t t n i t i t j i
C K c D h D C

− − −

+= +
= = = +

 
= + + + 

 
∑ ∑ ∑… , 

           where Cn+1 = 0, and sums over empty sets are zero. 



 22

 The recursive equation determines how many subsequent 

periods’ demand is ordered in period t. 

 Note that the evaluation of C1 allows determining the 

optimal order quantity.  
  

•  Example 5   

 A market survey conducted by a television manufacturer has 

indicated that the demand for television sets is seasonal.  In 

particular, sales 0f 30,000 sets is forecast for the season 

Christmas (October to December), 20,000 for the winter 

slack season (January to March), 30,000 for the “new 

model” season (April to June), and 20,000 for the summer 

season (July to September). To meet demand for the 

respective seasons, a certain TV component must be 

available at the beginning of the season (1 component is 

required for each TV).  For this component, the fixed and 

variable order costs are assumed to be $20,000 and $1 in all 

periods.  The holding cost is also assumed constant at 

$0.2/unit.   

 What is the optimal production policy for the component? 

 Since all ordering quantities are multiples of 10 K, we can 

redefine the problem parameters in multiple of 10 K as 

follows:  D1 = 3, D2 = 2, D3 = 3, D4 = 2,  

                    ct = 1, ht = 0.2, Kt = 2, t =1,2,3,4     
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 The dynamic programming recursive proceeds as follows 

o In period 4,  

                    4 4 4 4 5 2 1 2 0 4C K c D C= + + = + × + =  
     That is, if period 4 starts with zero inventory the best policy   

     and (only alternative) is to place an order covering demand  

     for period 4 at a cost of $40 K.   

o In period 3,  

       

3 3 3 3 4

3 3 3 4 3 4 5

min{ ,
               ( ) )}
    min{2 3 4, 2 5 0.2 2 0} min{9,7.4} 7.4

C K c D C
K c D D h D C

= + +
+ + + +

= + + + + × + = =
 

 That is, if period 3 starts with zero inventory the best policy is to 

place an order covering demands for period 3 and 4 at a cost of     

$74 K. 

o In period 2,        

2 2 2 2 3

2 2 2 3 2 3 4

2 2 2 3 4 2 3 4 3 4 5

min{ ,  
               ( ) ,
               ( ) ( ) }
    min{2 2 7.4, 2 5 0.2 3 4, 2 7 0.2 5 0.2 2 0}
    min{11.4,11.6,10.4} 10.4

C K c D C
K c D D h D C
K c D D D h D D h D C

= + +
+ + + +
+ + + + + + +

= + + + + × + + + × + × +
= =

 

  That is, if period 2 starts with zero inventory the best policy is to  

   place an order covering demands for periods 2, 3 and 4 at a cost of  

   $104 K. 
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o    In period 1,         

1 1 1 1 2

1 1 1 2 1 2 3

1 1 1 2 3 1 2 3 2 3 4

1 1 1 2 3 4 1 2 3 4 2 3 4 3 4 5

min{ ,  
               ( ) ,
               ( ) ( )
               ( ) ( ) ( ) }
    min{2 3 10.4, 2 5 0.2 2 7.4,

C K c D C
K c D D h D C
K c D D D h D D h D C
K c D D D D h D D D h D D h D C

= + +
+ + + +
+ + + + + + +
+ + + + + + + + + + +

= + + + + × + 2 8 0.2 5 0.2 3 4,
                2 10 0.2 7 0.2 5 0.2 2 0}
    min{15.4,14.8,15.6,14.8} 14.8

+ + × + × +
+ + × + × + × +

= =
    

   That is, the optimal policy is one of two alternatives: 

   1.  Produce 10 “units” (for all four periods) in period 1. Don’t  

         produce in other periods. 

   2. In period 1, produce 5 units (for periods 1 and 2).  Then, in  

        period 3 produce 5 units (for periods 3 and 4).  Don’t  

        produce periods 2 and 4.  

Both alternatives incurs a cost of $148 K.  

   
 


