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Random-Number Generators 2 (Chapter 7, Law) 
   

• Testing random number generators 

 Since random number generators are completely 

deterministic, we need to test to see if they appear to be 

random and IID uniform on [0, 1]. 

 There are two types of tests:  Empirical and theoretical. 

 Empirical tests are statistical tests performed on the 

numbers produced by a generator.   

 Empirical tests, are, therefore, local as they depend on a  

specific sample of numbers used for testing. 

  Theoretical test are global. The parameters of a generator 

are used to assess the quality of the generator. 
  

•  Elements of a statistical test 

 Statistical tests are used to draw conclusions using data. 

 Statistical tests allow deciding between two alternatives:  

o H0: The null hypothesis, 

o Ha: The alternative hypothesis. 

 H0 represents the status-quo.  

 Ha is the hypothesis we want to provide evidence to justify. 

 We show that Ha is true by showing that H0 is not true. 
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 The decision between “reject H0” and “do not reject H0” is 

made based on a test statistic (TS) which is computed based 

on available data. 

 The decision is valid at a risk level α . 

 The rejection region (RR) specifies the values of TS for 

which H0 is rejected. 

 Then, one can make a conclusion of the form:  

“At 100α% significance level there is (in)sufficient   

   statistical evidence to favor Ha”. 

• χ2 (chi-squared) random variable   

 Let Z1, Z2, …, Zn be iid standard normal random variables, 

then 
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freedom” (df). 

• Pearson’s Theorem   

 Consider k boxes B1, B2, …, Bk, as in the following figure: 

 

 
 

 Assume that we throw n balls into these boxes randomly 

independently of each other.   

 Let pi be the probability that a ball is thrown in box i. 

 Let Oi be the number of observed balls in box i.   

 Then, Oi is binomially distributed with Ei = E[Oi] = npi . 

B1      B2             . . .                 Bk  
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 Further, define the rv χ2 as  
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 Pearson’s Theorem states that for n large enough χ2 has a 

χ2 distribution with k −1 df. 

 (The proof is based on the normal approximation to the 

Binomial distribution, the central limit theorem and noting 

that Oi are dependent and accounting for their correlation.)  

• χ2 test for random number generators   

 This test works on n generated pseudo random numbers,     

u1, u2, …, un, where n is large. 

 It tests whether the uis are uniformly distribute on (0,1). 

 One divides the (0,1) interval into k equal segments segment 

and measure the number of uis in each segment, Oi .  

 Select k such that the expected number of observations n/k ≥ 

5 (see Law pp. 343-345) for further discussion.  

 The test is performed as follows. 

o H0: uis are U(0,1)  

o Ha: uis are not U(0,1) 

o 
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o RR:  Reject H0 if 2 2
1,1k αχ χ − −>   , where 2

1,1k αχ − −  is such that  
2 2

1 1,1{ } 1k kP αχ χ α− − −< = − and 2
1kχ −  is a χ2 rv with k −1 df. 
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• Example 1: χ2
 test  

 The following 100 numbers were generated using Excel. 
0.126 0.092 0.375 0.938 0.254 0.223 0.029 0.359 0.397 0.343
0.086 0.300 0.072 0.001 0.404 0.621 0.092 0.120 0.565 0.869
0.255 0.958 0.874 0.893 0.046 0.424 0.325 0.603 0.235 0.660
0.167 0.336 0.708 0.589 0.381 0.225 0.191 0.288 0.596 0.633
0.832 0.422 0.902 0.348 0.143 0.039 0.723 0.372 0.920 0.928
0.786 0.680 0.430 0.610 0.363 0.463 0.670 0.678 0.926 0.223
0.208 0.650 0.070 0.010 0.696 0.340 0.548 0.497 0.973 0.518
0.821 0.456 0.485 0.629 0.683 0.953 0.338 0.750 0.780 0.075
0.321 0.994 0.984 0.293 0.185 0.454 0.474 0.557 0.094 0.464
0.690 0.636 0.195 0.645 0.680 0.548 0.118 0.543 0.476 0.137

 

 Use the χ2 test to test if this data is uniformly distributed. 

 The TS is computed as follows. 

i Interval Oi Ei (Oi − Ei)2 / Ei 
1 [0.0,0.1) 12 10 0.4 
2 [0.1,0.2) 9 10 0.1 
3 [0.2,0.3) 10 10 0 
4 [0.3,0.4) 13 10 0.9 
5 [0.4,0.5) 12 10 0.4 
6 [0.5,0.6) 8 10 0.4 
7 [0.6,0.7) 16 10 3.6 
8 [0.7,0.8) 5 10 2.5 
9 [0.8,0.9) 5 10 2.5 
10 [0.9,1.0] 10 10 0 

   χ2 10.8 
 

 For α = 0.05, the “critical value” for the test is            

χ2
9,0.95 = 16.919  (see Table T.2, p. 717, Law). 

 Decision: Do not reject H0. 

 Conclusion:  At a 5% significance level there is insufficient 

statistical evidence that the data is not U(0,1).  
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•  What is α anyway?  

 α is the probability of a “Type I error”,  

                          α = P{Reject H0|H0 is true} . 

 In Example 1 we would reject H0 if 
2 16.919χ > and 

conclude that the data is not U(0,1). 

 But this conclusion is false if the data is actually U(0,1). 

 This could happen, with probability  

α = P{χ2 > 16.919} = 0.05 . 

• Serial Test   

 This is a generalization of the χ2 test to higher dimensions. 

 Idea of the test:  If the uis are iid U(0,1) rvs, then the d-

tuples u1 = (u1, u2, …, ud), u2 = (ud+1, ud+2, …, u2d), …., are 

iid random vectors uniformly distributed on [0,1]d. 

α = 0.05 
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 For example, for d = 2, one arranges the generated random 

numbers into {(u1, u2), (u3, u4), …., (u2n−1, u2n)} and divides 

(0,1)2 into k2 squares labeled (j1,j2), j1 = 1,…, k, j2 = 1,…, k.  

  The serial test detects correlations (checks independence). 
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 For d =2, the test is performed as follows. 

o H0: uis are iid U(0,1)× U(0,1)  

o Ha: uis are not iid U(0,1)× U(0,1) 
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• Runs tests   

  These are tests of independence.  

 They should be used before tests of uniformity (such as χ2). 

 They are based on the number of runs, where a run is 

sequence of successive increasing or decreasing numbers. 
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 There are many types of runs tests. E.g., some are based on 

counting the total number of runs and others are based on 

counting runs of different lengths (see Law p. 407). 
 

• Runs up and down test   

  This test counts the total number of runs r in a series of 

generated numbers u1, u2, …, un. 

 The logic is that a truly random (independent) series, the 

number of runs should not be too small, nor too large.  

 If n is large and the uis are independent then it can be shown 

that the number of runs R is normally distributed with the 

following mean and variance  
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 The test is then performed as follows. 

o H0: uis are independent.  

o Ha: uis are not independent. 

o 
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o RR:  Reject H0 if 1 / 2z z α−< −   or 1 / 2z z α−>  . 
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• Example 2: Runs test   

 The following 40 numbers were generated from Excel. 

 Check independence using the runs test. 
 

0.84 0.20 0.92 0.01 0.89 0.48 0.32 0.97 0.98 0.15
− − + − + − − + + − 

0.37 0.44 0.00 0.84 0.52 0.82 0.60 0.84 0.47 0.02
− + − + − + − + − − 

0.57 0.95 0.94 0.46 0.76 0.43 0.95 0.19 0.38 0.64
+ + − − + − + − + + 

0.72 0.24 0.00 0.72 0.33 0.54 0.65 0.80 0.41 0.86
+ − − + − + + + − + 

 

 The number of runs here is r = 28. 

 With n = 40,  
2(40) 1 16(40) 29[ ] 26.33, 2.61.

3 90RE R σ− −
= = = =  

 
[ ] 28 26.33: 0.641

2.61R

r E RTS z
σ

− −
= = = . 

 For α = 0.05, the critical values is 1 / 2 1.96z α− = . 

 Since 1 / 2 1 / 2z z zα α− −− < < , do not reject H0. 

 Conclusion:  At a 5% significance level there is insufficient 

statistical evidence that the uis are not independent.  
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• Theoretical tests 

 As aforementioned, these tests do not use generated data. 

 They develop properties for a generator based on its 

parameters values. 

 For example, for a LCG it can be shown that the sample 

mean and variance of the generated uis over a full cycle are   

      
1 1
2 2

U
m

= −  and 2
2

1 1
12 12

s
m

= − . 

 This is a good indication for large period m since the exact 

values for “real” U(0,1) numbers are 1/2 and 1/12. 

 The best well-known theoretical tests are based on the 

observation of Marsaglia (1968) for LCGs:  

“Random numbers fall mainly in the planes” 

 For example, when plotting a large number of pairs (ui, ui+1) 

generated by a LCG, the values cluster around parallel lines 

through the unit square in a lattice structure.   

 The following two pages present examples of this.  

 Many theoretical, Spectral and lattice tests, attempt to 

compute the distance between hyperplanes, where the 

numbers fall.   

 The smaller this distance the better. 
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Two-dimensional 
 
m = 64, a = 37, c = 1: 

 
 
m = 64, a = 21, c = 1 (only change from above:  a = 21 rather than 37): 
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Three-dimensional 
 
m = 64, a = 37, c = 1: 

 
 
m = 231 = 2,147,483,648, a = 216 + 3 = 65,539, c = 0 (RANDU): 

 




