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Discrete Time Markov Chains (3) 

• Long-run Properties of MC (Stationary Solution)  

 Consider the two-state MC of the weather condition in 

Example 4.   
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 We see that the transition probability, pij
(n), is converging (as 

n →∞) to some limiting probabilities πj .  

 Other terms used to describe πj are the steady-state or the 

stationary probabilities.  

 That is, πj represents the probability that the process will be 

in state j after that the system has been “operational” for a 

long time (i.e., after two may transitions). 

 Alternatively, we can interpret πj as the long-run mean 

fraction of time the MC is in state j.  

 E.g., in the two-state weather MC, we conclude that it rains 

57.14% of the time. 

 Do the limiting probabilities exist for every MC? 

 No.  
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 E.g., For the two-state chain with  
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 Therefore, for n even Pn = I and for n odd Pn = P, regardless 

of how large n is. 

 That is, the limiting probabilities πj do not exist.     

 When do the limiting probabilities exist? 
 

Theorem 1.  For a finite state MC (with state space S) which is 

irreducible and aperiodic 
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 Because 
( )lim n

j ijn
pπ

→∞
= is independent of i, then we can 

formally write that lim { }j nn
P X jπ

→∞
= = . 

• Mean Recurrence Time and Cost Models   

 The interpretation of πj as the long run fraction of time spent 

in state j allows for the following useful facts. 

 Suppose that each visit to state j incurs a cost Cj.  Then, the 

long-run mean cost per unit time is .j j
j S

Cπ
∈
∑   

 The mean recurrence time of state j, μjj, is the mean number 

of transitions until the MC starting in state j returns to j.  

 On average, the MC will have one transition out of state j, for 

every μjj transition from states other than j, then if one 

measures time in number of transitions (imagine a transition 

happening once a day), then πj = 1/μjj ⇒ μjj  = 1/ πj .    

• Example 8  

 Every year at the beginning of the gardening season (March), 

a gardener assesses the soil condition as (1) good, (2) fair, 

and (3) poor, and applies a fertilizer accordingly.  The 

gardener estimates that the transition probabilities of the soil 

condition from one year to another by the following matrix:     
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0.3 0.6 0.1
0.1 0.60 0.30
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  If fertilizing costs $100, $125, and $160 in good, fair, and 

poor years respectively. What is the expected annual cost?  

  The gardener situation can be represented by a MC with 

states {1,2,3} and a transition probability matrix P.  It can be 

easily verified that this MC is irreducible and aperiodic.  

 The limiting probabilities for the MC are given by   
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         which implies that the πi’s are the solution to the following  

          equations: 
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          Solving this system of linear equations gives π1 = 0.102,  

          π2 = 0.525, and π3 = 0.373 . 

 The expected fertilizing cost is then  

0.102×100 + 0.525×125 + 0.373×160 = $135.51 . 
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 If the soil is good this year, after how many years it is 

expected to be good again? 

 μ11 = 1/π1  = 1/0.102 = 9.8 years.  

 

 

 

• Example 9  

 An auto insurance company is using the Bonus Malus (Latin 

for Good-Bad) system.  Each policyholder is given a positive 

integer valued state and the annual premium is a function of 

this state.  A policyholder’s state changes from year in 

response to number of claims made by that policy holder.  

Suppose there are four states in the Bonus Malus system.    

The policyholder will move from one state this year to 

another state next year based on the number of claims made 

this year as indicated in the following table. 
 

  Next State if 
State Annual Premium 0 claims 1 claim 2 claims ≥ 3 claims 

1 $200 1 2 3 4 
2 $250 1 3 4 4 
3 $400 2 4 4 4 
4 $600 3 4 4 4 

 

Suppose the number of claims a policyholder makes in a year  

has a Poisson distribution with mean 1/2. 

 What is the average premium paid by a policyholder?  
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 The policy holder situation can be modeled with a MC states 

{1,2,3,4} .  The transition probability matrix for this MC is 
  

 

Then,  

 

 

 

 

 The limiting probabilities of this MC are the solution to the 

following system of equations (obtained by setting πP = P, 

and Σπj = 1).    
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          Then, π1 = 0.3692, π2 = 0.2396, π3 = 0.2103, and 

           π4 = 0.1809 . 

   Finally, the average annual premium is 

200π1 +250π2 +400π3+ 600 π4 = $326.38 . 
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 If a policyholder is in state 2 now, after how many years this 

policyholder is expected to be in state 2 again?   

 μ22 = 1/π2  = 1/0.2396 = 4.17 years.  

              

• Example 10  

 The failure probability of a computer component is pi when 

the age of the component is i years.  Suppose the system 

starts fresh with a new component.  In an effort to minimize 

failures during service, an age replacement policy is 

instituted.  This policy calls for replacing the part upon its 

failure or upon its reaching the age of 4 years, whichever 

happens first.  Suppose replacement costs C dollars.  

Furthermore, replacement during service incurs an additional 

interruption cost of K dollars.  

 How would you find the expected annual cost of this system? 

 This system can be modeled with a MC with states {1, 2, 3, 

4} representing the age of the components at the end of a 

year.  The transition probability matrix of this MC is 
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Text Box
Additional assumptions.1. component fails at most once/year.2. Age is observed at end of year only. 
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 Then, we can solve for the limiting probabilities π1, π2, π3, 

and π4 .   

 Note that π1 is the fraction of years where the component is 

replaced (due to failure or reaching age 4), while π4 is the 

fraction of years where the part is replaced due to reaching 

age 4.   

 Therefore, the expected annual cost is  

Cπ1 + K(π1 − π 4) . 

• Example 11  

 The transition matrix, P, of a MC with state space S, having n 

states, is said to be double-stochastic if 
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assuming that states are numbered from 1 to n. 

 Show that the limiting probabilities for a MC with a double-

stochastic transition matrix are given by   
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 Note that π satisfy the equations for the limiting probabilities    
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       In addition, 
1

1.
n

j
j
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 Therefore, the limiting probabilities are given 

by (1/ ,1/ , ,1/ )n n nπ = …  since the equations for the limiting 

probabilities have a unique solution.     
 

• Example 12  

 Consider a production line where each item has a probability 

p of being defective, independent of the condition of other 

items.  Initially, every item is sampled as it is produced 

(100% inspection).  This procedure continues until 4 

consecutive nondefective items are found.  Then, the 

sampling plan calls for sampling only 1 out of 3 items at 

random (1-out-of-3 inspection), until a defective item is 

found.  When this happens, the plan calls for reverting to 

100% inspection until 4 consecutive nondefective items are 

found.  The process continues in the same way. 

 What is the average fraction of items inspected (AFI)? 

 The inspection process can be modeled as a MC with states, 

0,1,2,3 representing the number of consecutive nondefective 

items found when 100% inspection is adopted, and state 4 

representing the 1-out-of-3 inspection.  The transition 

probability matrix for this MC is     
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 Once can then determine, the limiting probabilities, π0, π1, π2, 

π3, and π4 .  The average fraction inspected is then  

AFI = π0 + π1 + π2 + π3 + (π4 / 3) . 

 Assume that each item found defective is replaced with a 

good item.  What is the fraction of defective items in the 

output of the process (also called the average outgoing 

quality)?  

AOQ = p(1−AFI) . 




