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Queueing Theory (4) 

•   The M/M/1/K queue 

 This is a single-server queue with Poisson arrivals at rate λ, 

and exponential service times with rate µ. 

 However, the system can accommodate at most K customers 

(i.e., there are only K − 1 waiting spaces).  

 K is known as the buffer size. 

 E.g.,  

o A bank that has room for at most K customers.  

o A manufacturing station with a WIP buffer of capacity K. 

o  A call center that can handle at most K calls. 

 Arriving customers who find the system “full” leave 

immediately (these are “lost” customers).  
 

 

 

 

 

 

 

 The number of customers in the M/M/1/K system L(t) is a 

birth death process with states 0, 1, 2, …, ,K, µn =µ, and  
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 The transition diagram for K = 3 is shown below. 

 

 

 

   
 

  Define ρ =  λ /µ .  

 Note that ρ needs not to be less than 1 here.  (why?)   

 Applying the general flow balance equation for a birth-death 

process, the limiting probabilities are given by      
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 And, for n = 1,2, …, K   

1

(1 ) ,      if 1        
1

1 ,          if  1        
1

n

K

nP

K

ρ ρ ρ
ρ

ρ

+

 −
≠ −= 

 = +
 

 The probability that a customer is lost is PK . 

 The “effective” arrival rate λe is the rate of arrivals who join 

the system. Then,  

(1 )e KPλ λ= − . 

 The fraction of time the server is busy is λe/µ . 

 If ρ ≠ 1, the mean number in the system is  
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 The mean number in queue is     
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•   Example 8 

 Cars arrive to the drive-in at Hot Dog King according to a 

Poisson process with rate 40 per hour.  If a total of more 

than four cars are in line (including the car at the window) a 

car will not enter the line. The average service time at the 

window is exponentially distributed with mean 4 minutes.  

 What is the mean number of cars waiting? 

 This can be modeled as an M/M/1/K with λ = 40, µ = 15,  

     and K = 4. Then, ρ = λ/µ = 40/15 = 2.666  ≠ 1, and 
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 Finally, Lq = L − λe/µ = 3.44 − 14.81/15 = 2.45.  
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 On average, how many cars are served per hour?  

  λe = 14.81. 

 On average, how long will a car stay at the drive-in window 

before receiving food? 

 W = L/λe = 3.44/ 14.81 = 0.23 hours ≈ 14 minutes.  
   

•   Example 9 

 Seas Beginnings, a small mail order firm, has one phone 

operator.  Calls arrive to Seas Beginnings at a Poisson rate 

of 60 per hour, and it takes an exponentially distributed time 

with mean 1 minute to handle a call.  When the operator is 

busy, an incoming call is put on hold (with “nice” music) in 

one of K phone lines Seas Beginnings.  If all K lines are 

busy (meaning that one call is being handled and K − 1 are 

on hold), a caller gets a busy signal and calls a competitor 

(Air End). Seas Beginnings wants at most 1% of caller to 

get a busy signal.  How many phone lines should be 

provided?      

 This can be modeled as an M/M/1/K with λ = µ = 60 / hour. 

Then, ρ = 1, and PK = 1/ (K+1). The desired service level 

requires PK ≤ 0.01 ⇒ K+1 > 100 ⇒ K = 100.  
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 What about mean caller delay?  

 Wq = (L − λe/µ)/ λe = [Κ / 2 −1/(K+1)]/{λ[1 −1/(K+1)]}     

                                    = 0.84 hours ≈ 50 minutes.  (too long). 

 How can this system be improved? 

 Add more operators to bring mean delay down while 

maintaining a “rejection” probability of 1%.  For this, we 

need to generalize M/M/1/K to multi-server.  This is done 

next.  
   

•   The M/M/c/K queue 

 This is a generalization of M/M/1/K to many servers. 

Specifically, this is a Markovian queue with c servers and    

K − c waiting spaces (where K > c).  

 The number of customers in the M/M/c/K system, L(t), is a 

birth death process with states 0, 1, 2, …, ,K,  and  
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 Let a = λ/µ, and ρ = a/c. Applying birth-death flow balance 

equation gives 
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 The effective arrival rate is (1 )e KPλ λ= − .  Other measures 

of performance are found as follows.  
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•   Example 10 

 How many more operators should Sea Beginnings needs 

mean delay down while maintaining a “rejection” 

probability of 1%.   

 Consider adding two servers.  The resulting M/M/2/100 

system has λ = µ = 60, a = 1, and ρ = 0.5. 

 Then,  
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 But obviously here, there are more lines than needed.  In 

your HW, you will determine the minimum number of 

operators and lines that achieve the desired service level. 
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•   The M/M/c/c Erlang loss model  

 This a special case of M/M/c/K with K = c. 

 That is, there is no waiting.  Incoming customers that find 

all servers busy leave the system. 
 

 

   

 

     

 
 

 

 Applying the formulas for M/M/c/K with K = c,  
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 In particular, Erlang’s loss formula is 
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 Note that B(c,a) = P{all servers are busy}  

                               = P{an arrival will be rejected} . 

 Erlang, a Swedish engineer, developed this model for a 

simple telephone network.  

 This is considered the first application of queueing theory. 
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 An interesting feature of the Erlang loss model is that the 

system size distribution formula, holds for any service time 

distribution.  

 That is, for an M/G/c/c system  

0

/ !, 0,1, 2, ,

!

n

n nc

n

a nP n c
a
n=

= =

∑
…

 

 That is, Pn is insensitive to service time variability.  It only 

depends on the mean service time E[S]. (More specifically 

on a = λ E[S]).   
 

•   Example 11 

 What is the minimal number of servers needed, in an 

M/M/c/c  Erlang loss system, to handle an offered load        

a = λ/µ = 2 erlangs, with a loss no higher than 2%? 

 Starting with c = 1, increase c until B(c, a) < 0.02. 

c B(c, 2) 
1 2/3 
2 2/5 
3 4/19 
4 2/21 ≈ 0.095 
5 4/109  ≈ 0.095 
6 4/381 ≈ 0.01  

 

 Therefore, 6 servers are needed to achieve the desired 

service level. 
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•   The M/M/∞ unlimited service model  

 This is an M/M/c queue with an infinite number of servers. 

 

   

 

     

 

 It applies for example to a self-service situation.   

 The number of customers in the M/M/∞ system L(t) is a 

birth-death process with λn =λ, and µn =nµ, n =0,1,2, … 

 Applying the birth-death flaw balance equations gives 
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 That is, the number of busy servers is a Poisson random 

variable with mean a = λ/µ.  

 It can be shown that this Poisson distribution is insensitive 

to service times variability.  That is, it holds for M/G/∞ 

queue. 

 Note that the mean number of busy servers is a. 
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•  Example 12 

 Television station KCAD in a large metropolitan area 

wishes to know the average number of viewers it can expect 

on a Saturday evening prime-time program.  It has found 

from past surveys that people turning on their television sets 

on Saturday evening during prime time can be described 

rather well by a Poisson distribution with a mean of 

100,000/hour.  There are five major TV stations in the area, 

and it is believed that a given person chooses among these 

essentially at random.  Surveys have also showed that a 

person tunes in for an average time of 90 minutes.   

 This can be modeled as an M/G/∞ with λ = 100,000 /5         

= 20,000 persons/hour and µ = 1/(3/2) = 2/3.  Then, the 

mean number of viewers is a = λ/µ= 30,000.  

 What is the standard deviation of the number of viewers? 

 The standard deviation is 30000 173.2a = = . 

 

•   The M/M/c // N machine repair model  

 This is a model with a N machines.   

 The machines can be in one of two states: Operational or In-

Repair.  

 Operational machines are on the production floor.   
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 Each machine fails at an exponential rate λ independent of 

other machines. 

 A failed machine is moved to the repair shop staffed by       

c ≤ N repairmen.  If all repairmen are busy the machine 

waits in queue. 

 Repair times are exponentially distributed with rate µ.  
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 This model is different from other “open” models in that 

there is a limited number of entities N that move around the 

system.  This is called a closed queueing network. 

 The number of machines in the repair shop, L(t), is a birth-

death process with   
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 Applying the birth-death flaw balance equations gives 
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 The mean number in the repair system (mean number of 

down machines) is 
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 The mean number of up machines is N − L. 

 The most important measure of performance of such system 

is the effective arrival rate λf, also known as the aggregate 

failure rate or the throughput. By conditioning on L(t), 
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 Other measure of performance are  

o The mean number in repair queue, Lq = L − λf /µ , 

o  The waiting time for repair, Wq = Lq / λf , 
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o  The total time in the repair system, W = Wq + 1/µ . 
 

•  Example 13 

 The Train SemiConductor Company uses five robots in the 

manufacturing of its circuit boards.  The robots break down 

periodically, and the company has two repair people to do 

service when robots fail.  When one is fixed, the time until 

the next breakdown is thought to be exponentially 

distributed with mean 30 hours. The shop always has 

enough of a work backlog to ensure that all robots in 

operating condition will be working.  The repair time for 

each service is thought to be exponentially distributed with 

mean 3 hours.   

 The shop manager wished to know the average number of 

robots operational at any given time, the expected down 

time of a robot, and the expected fraction of time the 

repairmen are idle.  

 This can be modeled as an M/M/2 // 5 queue with λ = 1/30, 

µ = 1/3.  Then, a = λ/µ = 0.1.  

 Then,    
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 Therefore, the average number of operational robots is    

N − L = 4.535. 

 The expected fraction of time a repairman is idle is  

P0 + (1/2)P1 = 0.619 [1+ (0.5)(5)(0.1)] = 0.773. 

 The expected down time of a robot is   

/ 3.075 hoursfW L λ= =    . 

Remark.   

 The following algorithm facilitates the computations. 

  Step 0. Set P0 = 1, S = 1, L = 0. 

  Step 2. For n = 1 to c −1 

                  Set Pn = [(N − n)/n] Pn−1, S = S+Pn, L = L+nPn 

  Step 2. For n = c to N  

                  Set Pn = [(N − n)/c] Pn−1, S = S+Pn, L = L+nPn 

  Step 3.  Set L = L/S .     

  Step 4. For n = 0 to N    

                   Set Pn = Pn/S .  


