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Inventory Theory (2) 

•  Continuous review (s, Q) model with probabilistic demand  

  Consider the following inventory system with probabilistic 

demand.  

 The inventory level is reviewed continuously. 

 The order policy is as follows:  Whenever the inventory 

level drops below the reorder point, s, place an order of size 

Q, which arrives after a lead time L.  

 No more than one order can be outstanding.  

 The cost structure is similar to that of the EOQ model, with 

a holding cost proportional to average inventory at a rate of 

h ($/unit/unit time) and an ordering cost of the form        

C(x) = K+cx , when the order quantity x > 0. 

 Shortages may occur and excess demand is backordered. 

 The shortage cost is proportional to the number of units 

short, and incur a one-time cost at a rate of b ($/unit). 

 Determining an exact optimal policy (i.e. optimal values for 

s and Q) is complex. 

 In the following we discuss two approximate approaches for 

obtaining near-optimal policies. 
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•   Near-optimal (s, Q) policy based on EOQ and service level  

 This approach requires knowing the distribution of lead time 

demand, DL . 

 The order quantity Q is set equal to that of the EOQ model,  

2 [ ] ,KE DQ
h

=  

     where D is the demand per unit time. 

 The reorder point s is determined based on a service level 

constraint which guarantees that the probability of stock-out 

is “small”, as follows 

{ }LP D s α≥ ≤ , 

     where 0 < α < 1. 

 The reorder point can be written as s = SS + µL , where SS is 

the “safety stock”, and µL = E[DL] .  Then, the problem 

reduces to determining the safety stock, SS. 

 If demand during lead time is normal with mean and 

standard deviation µL and σL, SS is determined as follows.  
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     where Φ−1(.) is the inverse of the standard normal cdf  
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  Note that Φ−1(1−α) can be found from the following table 

or by using the NORMSINV(1−α) function  in Excel, or 

from a standard normal table such as Table B.1 (text). 
  

α 0.100 0.075 0.050 0.025 0.010 0.005 0.001 
Φ−1(1−α) 1.282 1.440 1.645 1.960 2.326 2.576 3.090 

 

•  Example 6.   

 Suppose that the three-ohm resistor in Example 1 actually 

had a probabilistic annual demand which is normally 

distributed with mean 2,400 units and standard deviation 

240 units.  Suppose also that the lead time is 1 month. 

 Derive a near-optimal (s, Q) policy with a stock-out 

probability below 5% .  

 The order quantity is found similar to the EOQ case as        

Q = 400.  

 The mean and standard deviation of leas time demand are  

µL = 2400/12 = 200, and σL = 240/12 = 20.   

 The safety stock level is SS ≥ σLΦ−1(1−α) = 20×1.645 = 32.9, 

Set SS = 33.   

 The reorder level is s = SS + µL = 233.  

 The optimal policy in this case is as follows: 

When inventory drops below 233, place an order for 400.  
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•   Near-optimal (s, Q) based on approximate holding cost   

 This approach also requires knowing the distribution of lead 

time demand, DL and the mean demand per unit time E[D]. 

 This approach works by minimizing an approximation for 

the expected cost per unit time.  

 The ordering cost is given similar to the EOQ model as     

(K + cQ)(E[D]/Q) = KE[D]/Q + cE[D]. 

 The expected holding cost per unit time is approximated as 

follows. 

Inventory

Time

Q

L

s

L
 

 The expected inventory level at the end of an ordering cycle 

is approximately is s − E[DL] . 

 The expected inventory level at the beginning of an ordering 

cycle is approximately s − E[DL] + Q. 
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 The approximation here is ignoring the possibility of 

shortages at the end of the cycle. 

 This is a good approximation if shortages occur sporadically 

(e.g. when the shortage cost is too high).   

 Then, the approximate average inventory level is  

[(s − E[DL] + Q) + (s − E[DL])] / 2 = Q/2 + s − E[DL] . 

 The approximate holding cost per unit time is   

h(Q/2 + s − E[DL]) . 

 The shortage cost per cycle is assumed to be proportional to 

the number of units short. By conditioning on DL this cost is    

( ) ( ) ,
LL D L L

s

b x s f x dx
∞

−∫  

      where fDL(.) is the pdf of DL . 

 The expected shortage cost per unit time is  
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 Finally, the expected cost per unit time is   
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 It can be shown that ECU(s, Q) is jointly convex in s and Q.   
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 The “optimal” values of Q and s can then be obtained by 

differentiating and setting first derivatives equal to zero. 

 Differentiating with respect to Q gives 
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 Differentiating with respect to s requires using Leibniz rule, 
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 The two equations giving Q* and s*, generally have no 

closed-form solution except for some lead time demand 

distribution (e.g., uniform, exponential). 

 In the general case where no closed-form solution exist, the 

optimal values Q* and s* can be found numerically. 
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•  Example 7.   

 Electro uses resin in its manufacturing process at the rate of 

1000 gallons per month.  Inventory for the resin is reviewed 

continuously.  It costs Electro $100 to place an order for a 

new shipment.  The holding cost is $2 per gallon per month, 

and the shortage cost per gallon is $10.  Historical data 

show that the demand during lead time is uniform over the 

range (0, 100) gallons.  

 Determine the optimal ordering policy for Electro. 

 In this case, E[D] = 1,000, DL ~ U(0, 100), K = 100, h = 2,  

b = 10.   

 In this case,  
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 Then, the optimality equations can be solved as follows.  
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 The optimal policy in this case is as follows: 

When inventory drops below 94, place an order for 319.  
  

•  Example 8.   

 A large military installation stocks a special purpose 

vacuum tube for use in radar sets under continuous review.  

The average annual demand for this tube is 1,600 units.  

Each tube costs $50.  The cost of placing an order for the 

tube is $4,000. Inventory holding cost is estimated to be 10 

$/unit/year.  It has been found that if a demand occurs when 

the system is out of stock, it is possible to obtain the tube 

from another location at an expense of $2,000 over the cost 

of the unit. An empirical investigation has shown that that 

the distribution of lead time demand is normal with mean 

750 and standard deviation 50.  
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 Determine the optimal ordering policy for the tube.  

 Since lead time demand is normal, then the optimality 

equations for s* and Q* cannot be solved directly as in the 

uniform demand case in Example 7.  

 Here, we’ll evaluate the expected annual cost for given 

values of s and Q, and then we’ll find s and Q numerically 

using Excel solver.  

 When the lead time demand is normal with mean µL and 

standard deviation σ L , it can be shown that     
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where φ and Φ are the pdf and cdf of the standard normal  

     random variable. 

 Then, the expected annual cost is  
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 Then, using Excel solver, we find s* = 884 ,  Q* = 1,147,  

     and the optimal annual cost is $92,813. (See Excel file.) 

 The optimal policy in this case is as follows: 

When inventory drops below 884, place an order for 1147.  
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•  The single-period newsvendor model   

 Consider a newsvendor, who at a start of each day, must 

decide the amount of newspapers to stock, S. 

 Placing an order has a negligible cost. 

 Daily demand for the newspaper is D (a random variable). 

 If demand during the day is less than S, than a holding cost 

at a rate h per unit is charged for each unit remaining in 

inventory.   

 If demand during the days is greater than S, than a shortage 

cost b is charged on each unit remaining in inventory.   

 By conditioning on daily demand, the expected daily cost is 

0

( ) ( ) ( ) ( ) ( )
S

D D
S

EC S h S x f x dx b x S f x dx
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= − + −∫ ∫  

         where fD(.) is the pdf of D.  (Denote by FD(.) the cdf of D.)   

 Differentiating with respect to S (using Leibniz rule) gives 
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 It follows that EC(S) is convex in S with an optimal order 

quantity given by 
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•  Newsvendor model facts   

 The newsvendor has many applications beyond the 

newspaper case.  E.g., it applies to perishable goods (e.g., 

produce, bread, etc.) and to style clothing. 

 The model can be even applied in manufacturing when 

deciding on how much to produce in a single batch. 

 The ratio b/(b+h) is known as the critical fractile.  This ratio 

can be written as cu/(cu+co) , where cu and co are the unit 

cost of underage and overage.  

 There are different derivations of the newsvendor model 

that consider other parameters such as unit variable cost c, 

unit salvage value, v, and selling price r.  

 These parameters can be included into the model easily.  

E.g., setting h′ = h + c − v and b′  = b + (r − c), allows 

deriving S* via a critical fractile b′ / (b′ + h′ ).  

 If the period starts with an initial on hand, inventory, x, then 

the optimal policy is to order S* − x if x < S* and not order 

otherwise, where S* is as given above. (This is called an 

order-up-to policy.)  

 This follows because EC(S) is convex in S. 

  If the initial inventory is x < S*, then the optimal order 

quantity is Q* = S* − x, which minimizes expected cost.  

 If x ≥ S*, then any order quantity Q > 0 increases cost.  
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•  Example 9. 

 The owner of a newsstand wants to determine the number of 

USA now newspapers that must be ordered at the beginning 

of each day.  The owner pays ¢30 per copy and sells it for 

¢75. Newspapers left at the end of the day are sold for 

recycling purposes at a price of ¢5. Daily demand is 

assumed to be normally distributed with mean 300 and 

standard deviation 20. 

 In this case, the order quantity can be found by defining 

equivalent holding and penalty costs, h′ = 30 − 5 = ¢25 and  

p′ = 75 − 30 = ¢45.   

 Let µ and σ be the mean and standard deviation of daily 

demand. The optimal order quantity is given by  

1
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b h b h
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′ ′−
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      where Φ−1(.) is the inverse of the standard normal cdf. 

 Therefore, the optimal order quantity is 307, derived as   

  

( )1 145* 300 20 300 20 0.643
45 30

   300 20 0.37 307
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 Note that Φ−1(0.643) ≈ 0.37 was found from Table B.1.  
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•  Single-period model with setup cost  

 Suppose that in the single-period model there is a fixed cost 

K for placing an order, and that the periods starts with an 

initial stock x. 

 In some situations, even if x is below the optimal order-up-

to-level, S*, it may not be efficient to order because of the 

fixed cost.  

 Specifically, one should order if the expected cost 

associated with placing an order is higher than that of 

associated with not placing an order. 

 First, if x ≥ S*, then no order should be placed as above. 

 Now, if x < S*, then the optimal-order-up-to level is S*. 

 Therefore, the cost of ordering is K + EC(S*). 

 The cost of not ordering is obviously EC(x). 

 Then, an order should be placed if    

                                      K + EC(S*) < EC(x) . 

 The convexity of EC(x) implies that there exists a unique     

s*, such that K + EC(S*) < ECO(x), for x < s*.      
 

 

 

 

 

 
x 
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 The optimal reorder point s* can be found by solving      

                                      K + EC(S*) = EC(s*) . 

 Note that s* solving this equation may be negative.  In this 

case, s* is set to zero and the optimal policy is not to order.   

 This could be the case if the fixed cost K is too high (see 

Example 14.2-2, text). 

 The optimal (s, S) policy is then  

If x < s*, order S* − x. Otherwise, do not order. 
 

•  Example 10. 

 The daily demand for an item is uniformly distributed 

between 0 and 10 units.  The unit holding cost of the item 

during the period is $0.5/unit and the unit shortage cost is 

$4.50/unit. A fixed cost of $5 is incurred every time an 

order is place. 

 Determine the optimal inventory policy for the item. 

 In this case, the demand pdf and cdf are 
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 The optimal order-up-to level is S* such that  

* 4.5( *) * 9
10 4.5 0.5D

b SF S S
b h
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+ + . 

 To determine the reorder point s*, we need to write an 

explicit expression for EC(S).  
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 Then, s* is the solution to the following equation 
2 2

2
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0.25 * 4.5 * 15 0 * 4.417 * 5
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 The optimal policy is  

     Order up to 9 (i.e. order 9 − x), if initial inventory x < 5. 

       Otherwise, do not order.   
  

•  Multi-period periodic review models  

 The single period model can be generalized into multi-

period model with n periods, where inventory is reviewed at 

the beginning of every period, and inventory is carried over 

when period to the other.  

 Suppose that excess demand is backordered. 

 The objective of the analysis is to decide how much to order 

in each period t, t =1, …, n, given that the initial inventory 

in period t is xt . 
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 Suppose that demands in periods 1 to n are iid.  

 Then, similar to the time-varying demand case, the problem 

can be solved with dynamic programming, with the 

objective of minimizing the cost-to-go between periods t 

and n. 

 However, the explicit solution to this stochastic dynamic 

program is complex. 

 Still we can tell the form of the optimal policy in these 

cases.  

 If the ordering cost is zero in all periods, then the ordering 

policy is an order-up-to level in all periods.   

 That is, there exist critical values, S1*, S2*, …, Sn*, such that 

it is optimal to order in period t if xt < St* . 

 If the setup cost is not zero, then the optimal policy is of the 

(st, St) type in all periods. 

 Note that these results hold if there is a deliver lead time. 

That is, if orders places at the beginning of period t are 

delivered at the beginning of period t+L.   

 However, with a delivery lead time the ordering decision is 

based on reviewing the inventory position (see below). 

 Interestingly, for the infinite horizon case, n = ∞, the 

optimal policy is stationary (i.e., the critical numbers are 

equal in all periods) as discussed next.   
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•  Infinite horizon periodic review models – zero lead time 

 Consider the model discussed above with an infinite number 

of periods.  

 Let D be the demand per period. 

 Suppose the holding cost is h per each unit leftover in 

inventory at the end of a period, and every unit of 

backlogged demand incurs a cost b. 

 If there is no fixed cost for placing an order, then it can be 

shown that the optimal policy is of an order-up-to-level with 

a critical number S*, which is the same for all periods. 

 However, because of the lead time, the decision to order is 

based on reviewing the inventory position, defined as the 

inventory on hand plus on order minus backorder. 

 That is, if the inventory position at the beginning of a period 

is less than S* than an order is placed to bring the inventory 

position up to S*. 

 The order-up-to-level S* is given by a critical-fractile 

formula as   

1
1( *) { *} ,L

L
D

bF S P D S
b h+

+= < =
+  

        where DL+1 is the (L+1)th fold convolution of the demand.  

 That is 
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         variables representing the demand in L+1 periods.    

 For example, if the demand per period is normal with mean 

µ and standard deviation σ, i.e., D ~ N(µ, σ).  Then,       
1 ~ [( 1) , 1 ]LD N L Lµ σ+ + + . 

 When a fixed setup cost K is incurred every time an order is 

placed, then the optimal policy is of the (s, S) type based 

also on inventory position. 

 

Inventory Position

Net Inventory

s

Inventory 
Level

S

L
Time

L

 

 However, there is no simple exact formula for determining 

the optimal (s, S) values.  

 Several approximations have been developed for 

determining near-optimal (s, S) values. 

 The revised power approximation method determines (s, S) 

values which have been shown to be very close to optimal.  
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 This method which requires only knowing the mean and the 

variance of the demand per review period, µ and σ, works 

as follows. 

     Step 1.  Find the mean and standard deviation of demand in   

      L+1 periods, 1 ( 1),L Lµ µ+ = +  and 
0.5

1 ( 1) .L Lσ σ+ = +  

      Step 2.  Find the following.  
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      Step 3.  If / 1.5pQ µ > , then the “optimal” policy is                 

       s* = sp and S* = sp + Qp, stop.  Otherwise, go to Step 4. 

Step 4.   The optimal policy is 0* min( , )ps s S=  and 

0* min( , ),p pS s Q S= +  where 1
0 1 1L L

pS
p h

µ σ −
+ +

 
= + Φ  + 

  

with (.)1−Φ  being the inverse cumulative density function 

of the standard normal random variable.  
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Remark.    

The optimal policy for the case with zero lead time can be 

obtained by setting L = 0 in both cases with and without fixed 

cost. 
 

•  Example 11. 

 An item inventory is reviewed every half month.  Demand 

during this review period is normal with mean 50 and 

standard deviation 20.  The fixed cost for placing an order is 

negligible.  An order is delivered after a lead time of 1 

month.  Unfilled demand is backlogged.  The holding and 

shortage costs (based on end of period inventory) are 0.02 

$/unit and 0.2 $/unit respectively.  

 Determine the optimal order quantity for this item. 

 Since the fixed cost is zero, an order-up-to policy is optimal.  

The optimal order up to level, S*, is determined as follows.  

1 ( *) ,LD

bF S
b h+ =

+  

           where L =2, DL+1 ~ N(150, 20 3 ), b = 0.02 and h = 0.2.   

 Then, 
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 The optimal policy is  

At the beginning of a period, if the inventory position is less 

than 199, place an order that brings the inventory position 

up to 199 units. Otherwise, do not order.  
 

•  Example 12. 

 Redo Example 11 assuming that there is a fixed ordering 

cost of $25.  

 Now the optimal policy is of the (s, S) form. We use the 

revised power approximation method to get a good policy. 
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     Step 2.    
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      Step 3.  / 348.28 / 50 1.5pQ µ = >  then the “optimal” policy        

       is s* = 108 and S* = 108 + 348.28 ≈ 456,  

 The approximately optimal policy is  

At the beginning of a period, if the inventory position is less 

than 108, place an order that brings the inventory position 

up to 456 units. Otherwise, do not order.  

 


