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Queueing Theory (5) 

•   Series Queues 

 Consider n queueing stations in series, where each station 

can be modeled as M/M/ci, where ci is the number of servers 

in station i, i  = 1, 2, …, n . 

 Customers arrive to the system according to a Poisson 

process with rate λ.  All customers are served in series in 

stations 1 to n.   

 Queueing could occur at any station.  Assume that there is 

ample waiting space at all stations.  

 The service time at station i, is exponential with rate µi .  

 

 

 

     

 

 

 E.g.,  

o A manufacturing assembly line.  

o Traffic lights. 

o Clinic physical examination procedure. 

o Shopping at a grocery store.  
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 This series system can be analyzed based on the following 

fact.   

   Fact.  The output (departure) process from an M/M/c queue is  
   Poisson with the same parameter λ as the arrival process.1 

 

 Then, each station can be analyzed as an independent 

M/M/ci with arrival rate λ and service rate µi .  
   

•  Example 14. 

 Customers arrive to a supermarket at a Poisson rate of 

40/hour during peak hours.  It takes a customer on the 

average 3/4 hour to fill his shopping cart, the filling time 

being exponentially distributed.  Upon filling their shopping 

cart customers move to a check-out line staffed by c 

cashiers, where they wait in a single line if all cashiers are 

busy.  There is enough space for any number of waiting 

customers.  Check-out time is exponentially distributed with 

mean 4 min.  

 What is the minimum number of cashiers required during 

peak hours? 

 This system can be modeled as two stations in series, with 

the first station as M/M/∞ with λ1 = 40 and µ1 = 4/3 and the 

second station as M/M/c with λ2 = 40 and µ2 = 15.   

 
                                                 
1 This fact does not hold for an M/G/c queue with non-exponential service times.   
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 In order for the check-out station to be stable,  

       ρ2 = λ2/(c2µ2) < 1 ⇒ c > λ/µ = 40/15 = 2.667 ⇒  cmin = 3 . 

 Suppose management decided to add one more than the 

minimum number of cashiers needed.   

 What is the mean delay at the checkout line? 

 Applying the M/M/4 results, with a = λ/µ  = 2.667, and          

ρ = a/4 = 0.667.   
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 What is the mean number of people at the check-out line 

and in the entire supermarket?  

 At the checkout line,  
2 2

2 2 2 2 40 0.019 2.667 3.43q qL L a W aλ= + = + = × + = . 

 At the entire store the mean number is   

1 2 1 1/ 3.43 40 /(4 / 3) 3.43 33.43.L L λ µ+ = + = + =  

 What is the probability that 25 people are in the store and 4 

people are at check-out line? 

 The required probability is    
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•   Open (Jackson) queueing networks 

 Consider a network with n service stations.   

 Customers arrive to station i, i = 1, …, n, from the outside 

world according to a Poisson process with rate γi .   

 The service time at station i is exponential with rate µi, and 

station i has ci servers.  

 A customer that completes service at station i goes to station 

j, j = 1, …, n, with probability rij and leaves the system with 

probability ri0 .   

 The key fact that the departures process from M/M/c greatly 

simplifies the analysis here also.  

 The marginal distribution of the number of customers at a 

station i is identical to that of an M/M/ci queue.  

 This implies that measures of performance such as Li, Wi, 

Wq
i, Lq

i can be found using M/M/ci results. 

 One issue here is to find the total arrival rate to a station, 

from the outside, and from other nodes. Let λi be the total 

arrival rate to station i, then  
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j
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 Note that rii is the probability of a “feedback” to station i. 

That is, rii is the probability that a customer that finishes 

processing at node i rejoins the queue at station i.  
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 When there is no feedback loops, λi’s can be found directly.   

 When there are feedback loops a system of linear equations 

should be solved to obtain the λi ’s. 
 

Remarks.  

 The stations are not truly independent M/M/ci queues.  E.g., 

the arrival processes to each station my not be Poisson (even 

though M/M/ci results hold for system size distribution).  

 This kind of a system is called an open network because it 

allows arrivals and departures from and to the outside 

world. Other queueing networks that do not allow arrivals 

and departures from outside are called closed networks. 
  

  

•  Example 15. 

 Redo Example 14 assuming that check-out line are arranged 

into parallel single-server stations, as usually done, and 

where a customer that fills his back is equally likely to join 

any of the check-out lines.  Assume that customers will not 

move from one line to the other.  

 The system can now be modeled as an open network with an 

M/M/∞ station (with λ1 = 40 and µ1 = 4/3) and “feeding” c 

identical M/M/1 stations (with λi = λ1/c and µi=15, i=2,…,c).  

 The stability condition at each of the c check-out station is 

                 ρi = (λ1/c)/µi < 1, i =2, …, c  ⇒  cmin = 3. 
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 Now in a system with four parallel single-server check-out 

lines, the mean delay at checkout is that of an M/M/1 with   

λi = 10 and µi = 15, i =2, …, c. Then, 
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 The mean number at check-out and in the entire store are 

respectively,   
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•  The M/GI/1 queue  

 This is a single server-queue with Poisson arrivals with rate 

λ and general (non-exponential) service times, S1, S2, …, 

which are iid.  

 This can be seen as a generalization of M/M/1 with general 

service times. 

 As in M/M/1, the stability condition is ρ = λ/µ < 1. 

 Because of the non-exponential service times, birth death 

analysis cannot be used.  

 However, an “imbedded” discrete time MC can be defined 

as the number in the system at customer departure epochs.  
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 Solving the discrete time MC leads to the following 

(Pollaczek-Kintchine) formula for the mean delay  
2[ ]( / /1)

2(1 )q
E SW M GI λ

ρ
=

−  . 

 Other measures of performance can be found from Little’s 

formula as usual.  

 It is useful to write the delay in M/GI/1 as a function of the 

delay in M/M/1 with the same arrival and service rate.  

 It can be shown that  
2 221 1( / /1) ( / /1)
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q q
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λ ρ
+ +

= =
−  , 

     where 2 2 2 2var[ ] /( [ ]) [ ] /( [ ]) 1SC S E S E S E S= = − , is the  

     coefficient of variation of service times. 

 This implies that waiting time in M/GI/1 is proportional to 

service time variability measured in terms of CS
2 . 

 Note that for exponential service times CS
2 = 1. 

 When service time variability is higher (lower) than that of a 

“similar” M/M/1, the delay is higher (lower) in M/GI/1. 

 For example, in a M/GI/1 with deterministic service times 

(known as M/D/1), CS
2 = 0, and  
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•  Example 16. 

 Suppose that failed machines are sent to a repair facility 

staffed by one repairman according to a Poisson process 

with rate 6/hour.  A machine could fail due to two types of 

defects.  Type 1 failure requires an exponentially distributed 

repair time with mean 7 minutes, while Type 2 failure 

requires an exponentially distributed repair time with mean 

20 minutes.  Suppose that the probability that a failure is of 

Type 1 is 0.9 (and that of Type 2 is 0.1).  In this case, the 

overall repair time is said to have a hyperexponential 

distribution.   

 What is the mean delay at the repair facility? 

 By conditioning on the type of failure, the first two 

moments of the repair time, S, are given by  

2 2 2

2 2 2

[ ] [ | Type 1] {Type I} [ | Type 1] {Type I}
        7 0.9 20 0.1 8.3 min.

[ ] [ | Type 1] {Type I} [ | Type 1] {Type I}
          (2 7 ) 0.9 (2 20 ) 0.1 168.2 min .

E S E S P E S P

E S E S P E S P

= +
= × + × =

= +

= × × + × × =

 

 Then, CS
2 = E[S2]/(E[S])2 − 1 = 168.2/8.32 − 1 = 1.442.  

 The mean delay in a M/M/1 with the same service and 

arrival rates is found as follows. In this case l, λ = 6 and      

µ = 60/8.3 = 7.23. Then, ρ = 0.83, and    
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2 20.83( / /1) 0.675 hours.
(1 ) 6(1 0.83)qW M M ρ

λ ρ
= = =

− −  

 Finally, the mean delay in the repair facility is  
21( / /1) ( / /1) 0.824 hours.

2
S

q q
CW M GI W M M+

= =  

 Waiting time is high here because of high service time 

variability. 

 What is the probability that the repairman is idle? 

P{server is idle} = 1− ρ = 1−0.83 = 0.17.  
  

•  The M/GI/c and GI/GI/c queue  

 The M/GI/c is a generalization of the multi-server M/M/c 

queue with general (non-exponential) service times, S1, S2, 

…, which are iid. 

 Simple Markovian analysis is not possible for M/GI/c.  

Measures of performance do generally have simple 

formulas.  Approximations are often used. 

 The following (QNA2) approximation for the mean delay is 

quite useful.  
2(1 )( / / ) ( / / )

2
S

q q
CW M GI c W M M c+

≈ , 

        where Wq(M/M/c) is the mean delay in an M/M/c queue  

        with same arrival and service rates.  
                                                 
2 QNA stands for Queueing Network Analyzer.  It is software developed by Ward Whitt at AT&T labs 
in the eighties. 
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 The QNA approximation is accurate for reasonably small 

CS
2 and high traffic intensity ρ .  (A limited empirical study 

suggests that with ρ > 0.8 and CS
2 < 100 the QNA error is 

less than 20%.)   

 The GI/GI/c is more general, with non-exponential i.i.d 

inter-arrival times, A1, A2, … 

 Analysis is even more difficult than M/G/c. However, the 

QNA approximation can be extended as follows.    
2 2( )( / / ) ( / / )

2
A S

q q
C CW GI GI c W M M c+

≈ , 

where CA
2  is the coefficient of variation of inter-arrival 

times.  (For Poisson arrivals CA
2 = 1.) 

 The QNA GI/GI/c approximation is accurate for reasonably 

small CS
2  and CA

2  and high ρ. 
  

•  Example 17. 

 Redo Example 16 assuming that the arrival rate is 12/hour 

and a repair facility having two repairmen. 

 The repair facility can be modeled as an M/GI/2 queue with   

λ = 12, µ = 7.23 (ρ = 0.83, a = 1.66) and CS
2 = 1.442.   

 The mean waiting time in a M/M/2 with the same service 

and arrival rates is  

 

 



 11

02
2

12 2

2

( / / 2)
!( )(1 )

1.66 1.66                      1 1.66 0.306
2!(2 7.23)(1 0.83) 2(1 0.83)

                                   

c

q
aW M M P

c cµ ρ
−

=
−

 
= + + = × − − 

 

 Then, the mean delay in M/G/2 is  

 

 
  

•  A Queuing Cost Model 

 In some situations, management has control over queueing 

systems parameters.  

 In the following, we assume that the number of servers c 

and/or the service rate µ are decision variables. 

 Determining “optimal” values for c and µ is done in a way 

as to minimize expected cost per unit time.  

 The cost function has two components: 

o Service cost per unit time, SC ; 

o Waiting cost per unit time, WC.    

 The expected service cost per unit time is given by 

[ ] sE SC C cµ= , 

        where Cs ($/unit service rate/server/unit time) is the unit  

       service cost.  

2(1 )( / / 2) ( / / 2) 0.374 hours.
2

S
q q

CW M GI W M M+
≈ =
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 Note that if µ is not a decision variable, then Csµ can be 

replaced by Cs′ = Csµ  ($/server/unit time). 

 In addition, the expected waiting time is  

 [ ] wE WC C L= , 

       where L is the mean number in the system and,                   

       Cw ($/customer/unit time) is the unit waiting cost.     
  

•  Example 18. 

 Jobs arrive at machine shop according to a Poisson process 

at the rate of 80 jobs per week.  An automatic machine 

represents the bottleneck in the shop.  It is estimated that a 

unit increase in the production rate of the machine will cost 

$250 per week. Delayed jobs result in lost business, which 

is estimated to be $500 per job per week.  

 Determine the optimum production rate of the automatic 

machine.  

 The automatic machine can be modeled as an M/M/1 queue 

with λ = 80 and µ being a decision variable. The unit 

service cost is Cs = $250 and the unit waiting cost is           

Cw = $500.   

 The expected weekly cost as a function of µ is given by  

( ) .s w s wEC C C L C C λµ µ µ
µ λ

= + = +
−   
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 The optimal value of µ that minimizes EC(µ), µ*,  is 

obtained by differentiating EC(µ) as follows.  

  

2

2 2

2

( ) ,
( )

( ) 0 0
( * ) ( * )

                   ( * ) * .

s w

s w s w

w w
s s

EC C C

EC C C C C

C C
C C

µ λ
µ µ λ

µ λ λ
µ µ λ µ λ

λ λµ λ µ λ

∂
= −

∂ −
∂

= ⇒ − = ⇒ =
∂ − −

⇒ − = ⇒ = ±

 

 Since ρ should be < 1, i.e., µ > λ, 

* .w
s

C
C
λµ λ= +  

 We also need to check the second-order conditions to 

confirm that µ* achieves the maximum value of EC(µ),  
2

2 3

( ) 2 0 .
( )w

EC Cµ λ
µ µ λ

∂
= >

∂ −  

 For the automatic machine, Since ρ should be < 1,  

80* 80 500 92.65 jobs/week
250w

s

C
C
λµ λ= + = + × =  

 Suppose that models of the machine available in the market 

have speeds, 80, 85, 90, 95, and 100 jobs/week. Which 

model should be chosen?    

 The convexity of the cost function implies that models with 

speeds 90 and 95 are the most efficient.  See figure.  
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EC µ( )

µ  
 To see whether 90 or 95, we compute the expected cost for 

each.  We find that EC(90) = $26,500, and   

       EC(95) = $26,417.  

 The model with speed 95 should be chosen.   
  

•  Example 19. 

 A repair facility has c repairmen. Broken machines arrive at 

a Poisson rate of 17.5 /hour.  Each repairman can handle 10 

machines per hour.  Hiring a repairman costs $12/hour.  The 

cost of lost production per waiting machine is $50/hour.   

 How many repairmen should be hired? 

 The repair facility can be modeled as an M/M/c with            

λ = 17.5, µ =10, and c being a decision variable.   
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 The unit service cost is Cs′= $12 and the unit waiting cost is  

Cw = $50.  

 The expected hourly cost can then be written as a function 

of c as      

( ) ( / / ) 12 50 ( / / ) .s wEC c C c C L M M c c L M M c′= + = +  

 Since no simple formula exists for L(M/M/c), the optimal 

value of c, c*, that minimizes EC(c) is determined via a 

numerical search.  

 One fact that facilitates the search is that EC(c) is convex.  

Then, c* can be determined is the minimum value of c such 

that EC(c+1) > EC(c).  

 The numerical search works as follows. First, the minimum 

value of c that achieves ρ = λ/(cµ) < 1 is 2.   
       

c L(M/M/c) EC(c) 
2 7.467   $397.5 
3 2.217 $146.85 
4 1.842 $140.10 
5 1.769 $148.45 

 

 Therefore, c* = 4 repairmen should be hired.  

 


