EXAMPLE 12.1

The projects review committee of Microsoft has $\$ 20$ million to allocate next year to new software product development. Any or all of five projects in Table 12-1 may be accepted. All amounts are in $\$ 1000$ units. Each project has an expected life of 9 years. Select the project(s) if a 15% return is expected.

TABLE 12-1	Five Equal-Life Independent Projects (\$1000 Units)		
Project	Initial Investment, \$	Annual Net Cash Flow, \$	Project Life, Years
A	$-10,000$	2870	9
B	$-15,000$	2930	9
C	$-8,000$	2680	9
D	$-6,000$	2540	9
E	$-21,000$	9500	9

Solution

Clearly, Project E is not feasible, as $\mathrm{NCF}_{\text {Eo }}=21>20$, so it can be eliminated from consideration. The remaining $2^{4}=16$ possible bundles are
$\{A\}, \mathrm{NCF}_{A 0}=10<20$, feasible. $P W_{A}=-10+2.870(P / A, 15 \%, 9)=\$ 3.694$ million.
$\{B\}, \mathrm{NCF}_{B 0}=15<20$, feasible. $P W_{B}=-15+2.930(P / A, 15 \%, 9)=-\$ 1.019 \mathrm{~K}<0$. (Eliminate B from consideration also as any bundle having B will be better off without B in it.)
$\{C\}, \mathrm{NCF}_{C 0}=8<20$, feasible. $P W_{C}=-8+2.680(P / A, 15 \%, 9)=\$ 4.788$ million.
$\{D\}$, NCF $_{\text {DO }}=6<20$, feasible. $P W_{D}=-6+2.540(P / A, 15 \%, 9)=\$ 6.120$ million.
$\{\mathrm{A}, \mathrm{C}\}$, NCFA $_{A C O}=10+8=18<20$, feasible. $P W_{A C}=3.694+4.788=\$ 8.482$ million.
$\{\mathrm{A}, \mathrm{D}\}$, NCFA $_{\text {ADO }}=10+6=16<20$, feasible. $P W_{A D}=3.694+6.120=\$ 9.814$ million.
$\{C, D\}$, NCFA $_{C D O}=8+6=14<20$, feasible. $P W_{C D}=4.788+6.120=\$ 10.908$ million.
$\{A, C, D\}, N C F A_{A C D O}=10+8+6=24>20$, infeasible.
Φ, choose nothing, $\mathrm{PW}_{\Phi}=0$.
Optimal solution: $\{C, D\}$.

