EXAMPLE 12.1

The projects review committee of Microsoft has \$20 million to allocate next year to new software product development. Any or all of five projects in Table 12–1 may be accepted. All amounts are in \$1000 units. Each project has an expected life of 9 years. Select the project(s) if a 15% return is expected.

TABLE 12-1	Five Equal-Life Independent Projects (\$1000 Units)		
Project	Initial Investment, \$	Annual Net Cash Flow, \$	Project Life, Years
А	-10,000	2870	9
В	-15,000	2930	9
С	-8,000	2680	9
D	-6,000	2540	9
E	-21,000	9500	9

Solution

Clearly, Project E is not feasible, as NCF_{E0} = 21 > 20, so it can be eliminated from consideration. The remaining 2^4 = 16 possible bundles are

{A}, NCF_{A0} = 10 < 20, feasible. $PW_A = -10 + 2.870(P/A, 15\%, 9) = 3.694 million.

{B}, NCF_{B0} = 15 < 20, feasible. *PW*_B = -15 + 2.930(P/A, 15%,9) = -\$1.019 K < 0. (Eliminate B from consideration also as any bundle having B will be better off without B in it.)

{C}, NCF_{c0} = 8 < 20, feasible. PW_c = -8 + 2.680(P/A, 15%,9) = \$4.788 million.

{D}, NCF_{D0} = 6 < 20, feasible. PW_D = -6 + 2.540(P/A, 15%,9) = \$6.120 million.

{A, C}, NCFA_{AC0} = 10 + 8 = 18 < 20, feasible. $PW_{AC} = 3.694 + 4.788 = 8.482 million.

{A, D}, NCFA_{AD0} = 10 + 6 = 16 < 20, feasible. $PW_{AD} = 3.694 + 6.120 =$ \$9.814 million.

{C, D}, NCFA_{CD0} = 8 + 6 = 14 < 20, feasible. *PW_{CD}* = 4.788 + 6.120 = \$10.908 million.

 $\{A, C, D\}, NCFA_{ACD0} = 10+8+6 = 24 > 20, infeasible.$

 Φ , choose nothing, PW_{Φ} = 0.

Optimal solution: {C, D}.