Dr. Maddah ENMG 400 Engineering Economy 04/11/21

Chapter 14 Effects of Inflation

- Definition

$>$ Inflation is an increase (over time) in the amount of money necessary to buy goods.

For example,

- The price of McDonald's Big Mac ${ }^{1}$ in the US was $\$ 2.14$ in 2003.
- The price of Big Mac in the US was around \$3.2 in 2010 and \$5 in 2015.
- Currently, it's around \$5.67.

> In simpler terms, "inflation means that your money won't buy as much today as it did yesterday."

[^0]
- Causes of inflation ${ }^{2}$

$>$ Demand for goods exceeds supply. That is, "too much money chasing too few goods."
$>$ Government prints money more than the economy is worth.
$>$ Increases in production costs that when passed to customers push prices up.
$>$ Excessive spending power of consumers.
$>$ Impact of international market prices (e.g., oil price).
$>$ Unresponsive prices that seldom declines (e.g., prices set by large firms).

- Consequences of inflation

$>$ Consequences depend on degree of inflation.
$>$ With mild inflation, rate is 2 to $4 \% /$ year, the economy prospers.
$>$ However, mild inflation often leads to a moderate inflation, with a rate of 5 to $9 \% /$ year. People start buying ahead.
$>$ Severe inflation occurs when inflation rate exceeds 10%. People with fixed incomes suffer.
$>$ Hyperinflation is when a nation's currency drastically looses value. Money becomes worthless.

[^1]
- Control of inflation

$>$ Control of inflation requires government intervention (specifically central banks).
$>$ It is not easy to achieve, given all the factors that comes to play.

- Measuring inflation

$>$ Inflation is measured based on actual price changes of basic commodities.
$>$ This gets complicated since different goods exhibit different price change patterns.
$>$ Predicting future inflation rates is not too reliable.

- Deflation
$>$ This is the opposite of inflation. It happens when supply exceeds demand. That is, when money is tight.
$>$ Deflation has very bad consequences if it lasts long. E.g., U.S. Great Depression in the Thirties.

- Inflation rate

$>$ Money in time period t_{1} can be related to money in time period t_{2} by the following

$$
\text { Dollars }_{t_{1}}=\frac{\text { Dollars }_{t_{2}}}{1+{\text { inflation rate between } t_{1} \text { and } t_{2}}^{2}}
$$

$>$ Dollars in period t_{1} are termed constant-value dollars or today's dollars

Dollars in time period t_{2} are termed future dollars or then-current dollars.
$>$ If n is the number if time periods between t_{1} and t_{2}, and f is the inflation rate per time period. Then,

Future dollars at $t_{2}=\left(\right.$ Today's dollars at $\left.t_{1}\right)(1+f)^{n}$.

- Annual inflation rate in Lebanon ${ }^{3}$

We went from deflation in 2015 to hyperinflation in 2020.

Year	2010	2011	2012	2014	2015
\boldsymbol{f}	3.98%	5.70%	2.6%	1.1%	-0.8%

Prof. Steve Hanke @steve_hanke• Jun 26

\#Venezuela's \#inflation tops my chart again this week at 2553\%/yr by my measure. It's followed by \#Zimbabwe with an inflation rate of 999\%/yr. Since last week, \#Lebanon's inflation has surged to $363 \% / \mathrm{yr}$., overtaking Syria's for third place.

Country	Free-Market Exchange Rate	Date of Hanke Measurement	Hanke Annual Measured Inflation Rate	IMF Year-End Inflation Projection	Hanke - IMF Differential
Venezuelat	$199,495.39$ USD/VES	$06 / 25 / 20$	$2,553 \%$	$15,000 \%$	$-12,447 \%$ pts.
Zimbabwe*	126.44 USD/ZIM	$06 / 25 / 20$	999%	154%	845% pts.
Lebanon	7000.00 USD/LBP	$06 / 25 / 20$	363%	17%	346% pts.
Syria	2500.00 USD/SYP	$06 / 25 / 20$	314%	N/A	-
Sudan	133.00 USD/SDG	$06 / 25 / 20$	88%	96%	-09% pts.
Argentina	73.52 USD/ARS	$06 / 25 / 20$	67%	N/A	-
Iran	$196,200.00$ USD/IRR	$06 / 25 / 20$	45%	42%	03% pts.
Brazil	5.36 USD/BRL	$06 / 25 / 20$	39%	3%	36% pts.
Libya	5.87 USD/LYD	$06 / 25 / 20$	33%	22%	11% pts.
Nigeria	459.00 USD/NGN	$06 / 25 / 20$	27%	14%	13% pts.

[^2]

- Inflation-adjusted interest rate

$>$ Denote by i the real interest rate per time period. This interest represents the actual gain on investment without the effect of inflation.
$>$ Then, with an inflation rate of f, P dollars now are equivalent to F, after n years where

$$
F=P(1+f)^{n}(1+i)^{n} .
$$

$>$ That is,

$$
F=P(1+i+f+i f)^{n}=P\left(1+i_{f}\right)^{n} .
$$

$>$ The interest rate i_{f} is called the inflation-adjusted interest,

$$
i_{f}=i+f+i f
$$

$>$ This is the interest rate observed in the market.
$>$ Utilizing i_{f} in the economic evaluation of a project takes into account the effects of inflation and the effect of real interest.

- Future value in today's dollar and maintaining purchasing power
$>$ The future value in today's dollars is the future value by excluding the effect of inflation, $F=P(1+i)^{n}$.
$>$ The amount of future dollars which has the same purchasing power as P dollars today is $F=P(1+f)^{n}$. (This is the same as future dollars.)

[^0]: ${ }^{1}$ The Big Mac Index compares prices of Big Mac around the world to gauge inflation in different and currency devaluation in different countries, https://fxssi.com/big-mac-index

[^1]: ${ }^{2}$ Adapted from Riggs et al., Engineering Economy, McGraw-Hill, 1996.

[^2]: ${ }^{3}$ Source: Economist Intelligence unit.

