Chapter 7 Rate of Return Analysis: Single Alternative (2)

- Bonds

$>$ Bonds represent the major source that governments and companies use to obtain debt financing.
$>$ A bond is an obligation by the bond issuer to pay money in the future to the bond holder (buyer), in exchange for money paid now, the price of the bond.
$>$ A bond pays its face value or at its maturity date.
$>$ In addition, bonds usually pay periodic coupon payments, typically every 6 months.
$>$ The coupon amount is described in percent of face value.
$>$ Clearly, bonds are conventional investments.
$>$ For example, consider a a 10% coupon, 3-year, bond with a face value of $\$ 100$, currently selling for $\$ 90$
$>$ This bond will pay $\$ 10$ coupon per year. If payment is semiannual, the coupon payment will be $\$ 5$, and there will pay six of these coupons.
$>$ The cash flow diagram of this bond is as follows.

$$
P=\$ 90
$$

$>$ A bond can be traded freely in the market place. Its price varies continuously.
$>$ A bond's yield to maturity (YTM) is the interest rate at which the PV of coupon and face value payments are equal to the bond price. This is always quoted on an annual basis.
$>$ YTM is actually the ROR of the bond quoted in nominal terms on an annual basis. (like the nominal rates in Ch. 4)
$>$ Consider a bond with a price of P and a face value F, making m coupon payments per year of C / m, with a total of n payments. (In the example above, $n=6$ and $m=2$.)
$>$ the YTM is the value of λ such that

$$
P=\frac{F}{(1+\lambda / m)^{n}}+\sum_{k=1}^{n} \frac{C / m}{[1+(\lambda / m)]^{k}} .
$$

$>$ In this "price-yield" equation, the interest is compounded every coupon payment period.
$>$ Equivalently, the price-yield equation can be written as,

$$
P=F(P / F, \lambda / m, n)+(C / m)(P / A, \lambda / m, n) .
$$

$>$ Upon simplification,

$$
P=\frac{F}{[1+(\lambda / m)]^{n}}+\frac{C}{\lambda}\left(1-\frac{1}{[1+(\lambda / m)]^{n}}\right) .
$$

The price-yield equation implies that the price of the bond is decreasing in its yield.
$>$ That is, a high-yield bond will have a "low" price.
$>$ Bond yields are quoted in the financial media.
E.g., Lebanese treasury bills yield (source: BLOM brief \& BDL)

Treasury Yields

	$\mathbf{2 6 / 0 9 / 2 0 1 4}$	$\mathbf{1 9 / 0 9 / 2 0 1 4}$	Change bps
3-M TB yield	4.39%	4.39%	0
6-M TB yield	4.87%	4.87%	0
12-M TB yield	5.08%	5.08%	0
24-M TB coupon	5.84%	5.84%	0
$36-M$ TB coupon	6.50%	6.50%	0
$60-\mathrm{M}$ TB coupon	6.74%	6.74%	0

Date	3 months TBs	6 months TBs	12 months TBs	24 months TBs	36 months TBs	60 months TBs	
Yield							
Latest							
23-Apr-20		4			5.50		
16-Apr-20	3.50		4.50			6.00	
09-Apr-20		4		5.00			
02-Apr-20	3.50		4.50			6.00	

- Lebanese Government Bonds

$>$ These are at the heart of the current economic crisis.
$>$ Post-war government issued bonds to borrow money to rebuild the country, in the hope of an economic rebound that never really happened.
$>$ Lack of real revenues and corruption pushed the government to borrow more and more, by issuing more bonds.
$>$ National debt in terms of GDP reached world record, and it is mainly in two forms treasury bills in LBP like the above one, and Eurobonds in dollars.
$>$ Main bond holders (both TBills and Eurobonds) are Lebanese banks who used depositors money to invest in high-yield government bonds.
> Long-story short, the government could not pay back its obligations in bond, and could not borrow more (i.e. issue new bonds to pay old bonds).
$>$ Earlier this year, after a mini-revolution, banks run, and (justified) collapse of trust in the financial system, the government "defaulted" on Eurobond.
$>$ Then, came the worst economic crisis in our history ...

Sky-High
Lebanon and Argentina have the world's highest-yielding dollar bonds

- World's highest-yielding sovereign dollar bonds

Bank Audi

BONDS	BIDS $\$$	OFFERS $\$$	ISSUE DATE	ISSUE SPREAD $(B P)$	OFFER SPREAD $(B P)$	OFFER YIELD
Republic of Lebanon 8 1/4 April 2021	17.500	19.500	12 Apr 06	337		

- Bond example

$>$ What is the price of a 10% (coupon, paid semiannually), 30year US Treasury bond with yield 4% ? Assume a face value of $\$ 100$.

In this example, $F=\$ 100, C=0.1 \times 100=\$ 10$, and $\lambda=4 \%$, $n=30 \times 2=60$.

$$
\begin{aligned}
P & =\frac{F}{[1+(\lambda / m)]^{n}}+\frac{C}{\lambda}\left(1-\frac{1}{[1+(\lambda / m)]^{n}}\right) \\
& =\frac{100}{(1+0.04 / 2)^{60}}+\frac{10}{0.04}\left(1-\frac{1}{(1+0.04 / 2)^{60}}\right)=\$ 204.28
\end{aligned}
$$

