Dr. Maddah INDE 301 Engineering Economy 05/30/20

Chapter 6 Annual Worth Analysis

• Introduction

- Annual worth (AW) analysis is a variant of the present worth analysis discussed in Chapter 5.
- However, AW analysis has many advantages that make it a useful technique for comparing alternatives.

• Advantages of AW analysis

- > It's a popular analysis technique.
- ➢ It's easy to understand. Results are reported in \$/year.
- It simplifies comparing alternatives when cash flows repeat. No need to compare the alternatives over the LCM. Compare over life cycle of each alternative.

• How does it work?

- ➢ For alternative *j*, find the uniform annual series, with value AW_j, which is equivalent to all the cash flows of the alternative at the decision maker's MARR.
- ➤ An alternative *j* with $AW_j \ge 0$ is economically viable.
- \triangleright Compare annualized series (the AW_j s) of all alternatives
- > The alternative with largest AW_j is selected.
- When cash flows repeat, AW_j is found over the duration of Alternative j. No need to compare over the LCM of lives.
- > If cash flows don't repeat, AW_j is found over a study period.

• Keep in mind

- > PW and AW analysis are equivalent
- → An alternative has $AW \ge 0$ if and only if $PW \ge 0$.
- An alternative has largest AW among a set of alternatives if and it only if it has the largest PW.

• Capital Recovery (CR) calculation

Capital Recovery (CR) is the annualized equivalent of the initial investment P and salvage value S of an alternative,

$$CR = -P(A/P, i, n) + S(A/F, i, n)$$
.

Commonly, CR is added to the annual operating costs (AOC) to get AW,

$$AW = CR + AOC \; .$$

• Annual worth analysis of permanent investments $(n = \infty)$

 \blacktriangleright This is similar to the capitalized cost analysis in Chapter 5.

> For a cash flow R, recurring every n_R years, starting Year n_R ,

$$A_{R} = R(A / F, i, n_{R}) = R\left[\frac{i}{(1+i)^{n_{R}}-1}\right].$$

> For a non-recurrent cash flow C, occurring at Year n_C ,

$$A_{C} = C(P/F, i, n_{C})(A/P, i, \infty) = \frac{Ci}{(1+i)^{n_{C}}}.$$