Chapter 4 Nominal and Effective Interest Rates

• Illustrative Example

- You placed \$100 in a saving account for one year at an interest rate of 1% per month.
- > Calculate the amount of interest and annual interest rate.
 - $F = P(1+i)^n = 100 \times 1.01^{12} = \112.68 . The interest earned is 112.68 -100 = \$12.68.
 - The annual interest rate is 12.68/100 = 12.68%.
- \blacktriangleright We say that the *effective* annual interest rate is 12.68%.
- \triangleright Or, the interest rate is 12% per year, compounded monthly.
- That is, the effective annual interest that corresponds to a 12% nominal annual interest, compounded monthly is 12.68%.

• Nominal interest rate

- A nominal interest rate is an interest rate that does not include any consideration of compounding.
- ➤ Means "in name only", "not the true, effective rate." E.g.,
- \geq 12% per year, compounded monthly
 - \circ 12% is NOT the true effective rate (per year)
 - 012% represents the nominal rate
- Nominal interest rate is commonly referred to as "APR" (annual percentage rate).

• Effective interest rate

- Effective interest rate is the actual rate that applies for a stated period of time.
- > It takes into account the effect compounding of interest
- Effective interest is stated in the following form:

r (per year), compounded every CP.

➤ It involves two parameters

 \circ The annual nominal rate r.

The compounding period, *CP*, the time where interest appliesE.g.,

- Daily compounding, CP = 1 day = 1/365 year.
- Weekly compounding, CP = 1 week = 1/52 year.
- Monthly compounding, CP = 1 month = 1/12 year.
- Quarterly compounding, CP = 3 months = 1/4 year.
- Semiannual compounding, CP = 6 months = 1/2 year.

> The effective rate is called APY (annual percentage yield).

• Factors under *m*-time-a-year compounding

Under compounding over a period CP = 1/m year (e.g., CP = 1/12 year = 1 month), and at a nominal interest rate r, a present current P is equivalent after k periods (e.g. months) to

$$F = P(1+r/m)^k \implies (P/F, r, m, k) = (1+r/m)^k$$

 \succ Similarly, F dollars after k periods are equivalent to

$$P = F / (1 + r/m)^k \Longrightarrow (F/P, r, m, k) = 1 / (1 + r/m)^k$$
.

• Computing the effective interest rate

- Note that the effective interest rate per CP is r / m, where m = 1/CP, with CP given in fraction of a year, is the number of times interest is compounded per year.
- E.g., with monthly compounding, m = 12, and a nominal rate of 12% translates into an effective monthly rate of 1%.
- With semiannual compounding, m =2, and a nominal rate of 12% translates into an effective semiannual rate of 6%.
- > Then, \$1 is equivalent to $(1 + r/m)^m$ after 1 year.
- > The effective annual rate is such that $1 + i = (1 + r/m)^m$. I.e.,

$$i = \left(1 + \frac{r}{m}\right)^m - 1.$$

• Continuous compounding

- ➤ If the compounding period, *CP*, is too small, *CP*→ 0, the number of compounding times gets too large, $m \rightarrow \infty$.
- This situation is known as "continuous compounding."
- ➢ By noting that there are *mt* compoundings over a time *t* expressed in years, the F/P factor over time *t*, under continuous compounding, is lim_m(1+r/m)^{mt} = e^{rt}
- Similarly, under continuous compounding, the effective annual rate is $i = e^r 1$.
- Continuous compounding is often assumed in quantitative finance as it simplifies the analysis.

Year	<i>m</i> = 1	<i>m</i> = 2	<i>m</i> = 4	<i>m</i> = 12	$m = \infty$
1	1.080	1.082	1.082	1.083	1.083
2	<mark>1.166</mark>	1.170	1.172	1.173	1.174
3	1.260	1.265	<mark>1.268</mark>	1.270	1.271
4	1.360	1.369	1.373	1.376	1.377
5	1.469	1.480	1.486	1.490	1.492
6	1.587	1.601	1.608	1.614	<mark>1.616</mark>
7	1.714	1.732	1.741	1.747	1.751
8	1.851	1.873	1.885	1.892	1.896
9	1.999	2.026	2.040	2.050	2.054
10	2.159	2.191	2.208	2.220	2.226

• Example: \$1 invested at a nominal rate of 8%

• Interest rate that varies with time

- In practice, interest rate may vary from one period to the other.
- In particular, it is often *expected* that the interest rate will *increase* with time.
- If the interest rates in periods, 1, ..., n are i₁, ..., i_n. Then, the future worth after n periods, F, of a present amount P is

$$F = P(1+i_1)(1+i_2)\dots(1+i_n) = P\prod_{t=1}^n (1+i_t).$$

- > The rates i_1, \ldots, i_n are known as *short rates*.
- The short rate *i_t* represents the expected 1-year rate after *t* years.