Dr. Maddah INDE 301 Engineering Economy

## Chapter 4 Nominal and Effective Interest Rates

## - Illustrative Example

$>$ You placed $\$ 100$ in a saving account for one year at an interest rate of $1 \%$ per month.
> Calculate the amount of interest and annual interest rate.

- $F=P(1+i)^{n}=100 \times 1.01^{12}=\$ 112.68$. The interest earned is $112.68-100=\$ 12.68$.
- The annual interest rate is $12.68 / 100=12.68 \%$.
$>$ We say that the effective annual interest rate is $12.68 \%$.
$>$ Or, the interest rate is $12 \%$ per year, compounded monthly.
$>$ That is, the effective annual interest that corresponds to a $12 \%$ nominal annual interest, compounded monthly is $12.68 \%$.


## - Nominal interest rate

$>$ A nominal interest rate is an interest rate that does not include any consideration of compounding.
$>$ Means "in name only", "not the true, effective rate." E.g.,
$>12 \%$ per year, compounded monthly

- $12 \%$ is NOT the true effective rate (per year)
- $12 \%$ represents the nominal rate
$>$ Nominal interest rate is commonly referred to as "APR" (annual percentage rate).


## - Effective interest rate

$>$ Effective interest rate is the actual rate that applies for a stated period of time.
$>$ It takes into account the effect compounding of interest
$>$ Effective interest is stated in the following form: $r$ (per year), compounded every $C P$.
$>$ It involves two parameters

- The annual nominal rate $r$.
- The compounding period, $C P$, the time where interest applies
- E.g.,
- Daily compounding, $C P=1$ day $=1 / 365$ year.
- Weekly compounding, $C P=1$ week $=1 / 52$ year.
- Monthly compounding, $C P=1$ month $=1 / 12$ year.
- Quarterly compounding, $C P=3$ months $=1 / 4$ year.
- Semiannual compounding, $C P=6$ months $=1 / 2$ year.
$>$ The effective rate is called APY (annual percentage yield).


## - Factors under m-time-a-year compounding

$>$ Under compounding over a period $C P=1 / m$ year (e.g., $\mathrm{CP}=$ $1 / 12$ year $=1$ month $)$, and at a nominal interest rate $r$, a present current $P$ is equivalent after $k$ periods (e.g. months) to

$$
F=P(1+r / m)^{k} \Rightarrow(\mathrm{P} / \mathrm{F}, r, m, k)=(1+r / m)^{k}
$$

$>$ Similarly, $F$ dollars after $k$ periods are equivalent to

$$
P=F /(1+r / m)^{k} \Rightarrow(\mathrm{~F} / \mathrm{P}, r, m, k)=1 /(1+r / m)^{k} .
$$

## - Computing the effective interest rate

$>$ Note that the effective interest rate per $C P$ is $r / m$, where $m=1 / C P$, with $C P$ given in fraction of a year, is the number of times interest is compounded per year.
$>$ E.g., with monthly compounding, $m=12$, and a nominal rate of $12 \%$ translates into an effective monthly rate of $1 \%$.
$>$ With semiannual compounding, $m=2$, and a nominal rate of $12 \%$ translates into an effective semiannual rate of $6 \%$.
$>$ Then, $\$ 1$ is equivalent to $(1+r / m)^{m}$ after 1 year.
$>$ The effective annual rate is such that $1+i=(1+r / m)^{m}$. I.e.,

$$
i=\left(1+\frac{r}{m}\right)^{m}-1
$$

## - Continuous compounding

$>$ If the compounding period, $C P$, is too small, $C P \rightarrow 0$, the number of compounding times gets too large, $m \rightarrow \infty$.
$>$ This situation is known as "continuous compounding."
$>$ By noting that there are $m t$ compoundings over a time $t$ expressed in years, the $\mathrm{F} / \mathrm{P}$ factor over time $t$, under continuous compounding, is $\lim _{m \rightarrow \infty}(1+r / m)^{m t}=e^{r t}$
$>$ Similarly, under continuous compounding, the effective annual rate is $i=e^{r}-1$.
$>$ Continuous compounding is often assumed in quantitative finance as it simplifies the analysis.

- Example: \$1 invested at a nominal rate of $\mathbf{8 \%}$

| Year | $\boldsymbol{m}=\mathbf{1}$ | $\boldsymbol{m}=\mathbf{2}$ | $\boldsymbol{m}=\mathbf{4}$ | $\boldsymbol{m}=\mathbf{1 2}$ | $\boldsymbol{m}=\boldsymbol{\infty}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1.080 | 1.082 | 1.082 | 1.083 | 1.083 |
| 2 | 1.166 | 1.170 | 1.172 | 1.173 | 1.174 |
| 3 | 1.260 | 1.265 | 1.268 | 1.270 | 1.271 |
| 4 | 1.360 | 1.369 | 1.373 | 1.376 | 1.377 |
| 5 | 1.469 | 1.480 | 1.486 | 1.490 | 1.492 |
| 6 | 1.587 | 1.601 | 1.608 | 1.614 | 1.616 |
| 7 | 1.714 | 1.732 | 1.741 | 1.747 | 1.751 |
| 8 | 1.851 | 1.873 | 1.885 | 1.892 | 1.896 |
| 9 | 1.999 | 2.026 | 2.040 | 2.050 | 2.054 |
| 10 | 2.159 | 2.191 | 2.208 | 2.220 | 2.226 |



## - Interest rate that varies with time

$>$ In practice, interest rate may vary from one period to the other.
$>$ In particular, it is often expected that the interest rate will increase with time.
$>$ If the interest rates in periods, $1, \ldots, n$ are $i_{1}, \ldots, i_{\mathrm{n}}$. Then, the future worth after n periods, $F$, of a present amount $P$ is

$$
F=P\left(1+i_{1}\right)\left(1+i_{2}\right) \ldots\left(1+i_{n}\right)=P \prod_{t=1}^{n}\left(1+i_{t}\right) .
$$

$>$ The rates $i_{1}, \ldots, i_{\mathrm{n}}$ are known as short rates.
$>$ The short rate $i_{t}$ represents the expected 1-year rate after $t$ years.

