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  Fixed-Income Securities (Chapter 3, Luenberger) 

 

 Financial instruments and securities 

 Money is the most popular of traded commodities. 

 Interest rate is a price for money. 

 Vast assortments of bills, notes, bonds, annuities, futures 

contracts, and mortgages are part of the market for money. 

 These items are not real goods.  They are traded based on the 

promises they represent. 

 These items are called financial instruments (products). 

 A financial instrument that has a well-developed market so 

that it can be traded freely and easily is called a security. 

 A fixed-income security is a financial instrument that 

promises a fixed (deterministic) income to the holder (e.g. 

bonds, mortgages).1  

 

 Examples of fixed-income securities  

 Saving deposits are offered by commercial banks and  

savings and loan institutions.   

o  Demand deposit pays interest that varies with market condition.   

o  Time deposit account pays a guaranteed interest but the deposit  

     must be maintained for a length of time (or penalties apply). 

 

                                                 
1 Certain fixed-income securities may generate income that varies with an interest rate index or a stock 

price.     
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o  A certificate of deposit (CD) is similar to a time deposit.  CDs  

    with large denominations can be sold in the market.   

 Money market is the market for short-term loans (≤ 1 year) 

by corporations and financial intermediaries (e.g. banks). 

o  A commercial paper is an unsecured loan to a corporation. 

o  A banker’s acceptance is a promise by a bank to pay an amount 

to a company at a future date. The company can sell this promise 

at a discount. 

o  Eurodollar deposits are deposits in dollars held in a bank  

    outside the U.S.   

o  Eurodollar CDs are CDs in dollars issued by a bank outside the 

U.S.  This allows escaping U.S. regulations. 

 The U.S. government obtains loans by issuing fixed-income 

securities.  

o U.S. Treasury bills are issued with a fixed maturity date of 13, 

26, or 52 weeks, and are sold at a discount from the face value. 

o U.S. Treasury notes are issued with maturities of 1-10 years and  

offer the holder coupon payments every six months.  At maturity, 

the holder receives the last coupon payment and the face value.  

o U.S. Treasury bonds are issued with maturities > 10 years. They 

are similar to Treasury notes but some are callable. 

o U.S. Treasury strips are bonds where the coupon payments and 

the principle are issued in strips.  Each strip can be traded 

independently as a zero-coupon bond. 
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 Bonds are also issued by other entities.  

o Municipal bonds are issued by agencies of state and local 

governments.  Their interest income is exempt from tax. 

o Corporate bonds are issued by corporations.  They vary in 

quality.     

 For a homeowner a mortgage looks like the opposite of a 

bond.   

 A homeowner will sell a mortgage in order to obtain cash to 

buy a home.  In return, the homeowner makes periodic 

(usually monthly) payments to the mortgage holder. 

 Mortgages are typically bundled into large packages and 

traded among financial institutions.  These packages are 

called mortgage-backed securities. 

 An annuity is a contract that pays the holder (the annuitant) 

money periodically.  E.g., pension benefits. 

 Annuity sometimes depends on the age of the annuitant at the 

time the annuity is purchased.   

 A perpetual annuity, or perpetuity, is an annuity that pays 

fixed income periodically forever.    

 Annuities are not real securities since they are not traded.  

But they provide investment opportunities. 
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 Value formulas  

 The present value of an annuity which pays an amount A per 

period for n period at an interest rate of r per period is  
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 The present value of a perpetual annuity which pays an 

amount A per period at an interest rate of r per period is  
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  Amortization is the process of substituting a current payment 

P for periodic payments of A per period.  (E.g. a car loan, 

home mortgage.) 

 At an interest rate of r per period, the periodic payment is  
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 Bond details (see also Chapter 12 in Antle’s book) 

 Bonds represent the greatest monetary values of fixed income 

securities. 

 A bond is an obligation by the bond issuer to pay money to 

the bond holder (buyer). 

 A bond pays its face value or par value at its maturity date. 

  In addition, bonds usually pay periodic coupon payments.  In 

the U.S., coupon payments are made every 6 months. 

 The coupon amount is described in percent of face value.   
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 Usually coupon rates are close to the prevailing interest rate. 

 A bond can be traded freely in the market place.  Its price 

varies continuously. 

 The bid price of a bond is the price dealers are willing to pay 

for a bond.  The ask price is the price at which dealers are 

willing to sell the bond.   

 

 Bond accrued interest 

 When buying a bond, one must pay the accrued interest to 

the seller in addition to the ask price.  

 This is the interest accrued since the last coupon payment till 

the sale date.  The accrued interest (AI) is given by    

number of days since last coupon
coupon amount .

number of days in coupon period
AI    

 

 Bond quality ratings 

 Bonds are subject to the risk of default if the issuer faces 

financial difficulties or falls into bankruptcy.   

 To characterize this risk bonds are rated by rating 

organizations.  U.S. treasury securities are not rated because 

they are considered risk-free. 

 A bond with low rating will have a lower price than a similar 

bond with high rating.   

 The two main rating organizations are Moody’s and Standard 

& Poor’s.  Their classification is as follows: 
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 Bond yield 

 Yield to maturity (YTM) is the IRR of the bond.  

 Specifically, for a bond with a price of P and a face value F 

making m coupon payments per year of C/m (with a total of n 

payments), the YTM is the value of such that  

1
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 This formula assumes that the interest is compounded every 

payment period. 

 

 Upon simplification,  
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Bond Grade Moody’s
Rating

Standard &
Poor’s Rating

Common
Bond Name

High Grade Aaa AAA Investment
Grade

Aa AA “

Medium
Grade

A A “

Baa BBB “

Speculative
Grade

Ba BB Junk Bond

B B “

Default
Danger

Caa CCC “

Ca CC “

C C “

D “
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 Example: Bond Price 

 Price of a bong having 10-year (maturity), 9% (coupon, paid 

semiannually),  8% yield (and face value 100), 

 

 

 

 

 Price-yield curves 

 These give the price, P, as a function of yield to maturity  . 

 Nature of price-yield curves. 

o P is decreasing in also decreases with P). 

o At  = 0, P = F+ n(C/m), this is the undiscounted price. 

o P tends to zero as  increases. 

o The yield curve is convex (P is decreasing in at a 

decreasing rate). 

o As the coupon payment, C, increases, P increases. 

o At  = C/F, P = F, for all n. This is the price of a par bond. 

o As time to maturity, n, increases, the price-yield curve 

becomes steeper. 

o  That is, long-maturity bonds are very sensitive to interest 

rate. 

   The following figure shows price-yield curves for a 30-year  

   bond having a coupon value C = 5%, 10%, and 15%. 
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   The following figure shows different price-yield curves for    

   a 10% coupon  bond with maturity n = 3, 10, and 30 years. 
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 E.g., Lebanese treasury bills yield in October 2019 (BDL) 

 

Maturity 3 months 6 months 
12 
months 

24 
months 

36 
months 

60 
months 

84 
months 

120 
months 

Latest Yield 

24-Oct-19   5.85   7.00       10.00 

17-Oct-19 5.30   6.50     8.00     

10-Oct-19   5.85     7.50   9.00   

03-Oct-19     6.50     8.00     
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 E.g.: U.S. treasury bills yield in November 2019 

(www.treasury.gov) 

 

 E.g.: Lebanese Bonds Rating (highlighted in red, 

Alakhbar newspaper) 

 

 



 

 

 

 

Source:  https://www.bloomberg.com/news/articles/2019-11-20/yields-past-100-just-put-lebanon-

debt-into-venezuela-territory 

https://www.bloomberg.com/news/articles/2019-11-20/yields-past-100-just-put-lebanon-debt-into-venezuela-territory
https://www.bloomberg.com/news/articles/2019-11-20/yields-past-100-just-put-lebanon-debt-into-venezuela-territory
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  Fixed-Income Securities (2) (Chapter 3, Luenberger) 

 

 Duration  

 Duration gives a direct measure of bond price sensitivity to 

interest rate. 

 Generally, for a cash flow stream with cash flows at times t0, 

t1, …, tn, the duration is given by 

1

( )

,

n
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k

PV t t
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


 

     where PV(tk) is the present value of the cash flow at time k  

     and
1

( )
n

k

k

P PV t


  is the present value of the whole stream. 

 Duration is a weighted average of cash flow times. When 

cash flows are all nonnegative t0 ≤ D ≤ tn . 

 

 For a financial instrument that generates a cash flow stream 

of m payments per year over a total of n periods, and a 

payment Ck in period k the duration is given by  
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       where  is the yield to maturity (interest rate). 

 This duration is called Macaulay duration. 
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 For  a bond with a price of P and a face value F making m 

coupon payments per year of C/m (with a total of n 

payments), and YTM , Ck = C/m for k =1, …, n − 1, and  

     Cn = C/m + F.  

 Define the coupon rate per period as c = (C/m)/F, and the 

yield per period as y = /m.  Then, the Macaulay duration of 

the bond is 
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 It can be shown that  
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 Upon simplification, the duration of the bond is 
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 If the bond is at par, c = y, 
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 Duration Estimation Example 

 

 Properties of bond duration 
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 Duration is always less than time to maturity. 

 As time to maturity gets large, duration tends to a finite limit. 

 Duration is not too sensitive to coupon rate. 

 Long durations are achieved with long maturities and low 

coupon rates. 

 

 

 

D(c, m, y, n) 
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 Duration and sensitivity 

  The present value of the cash flow at time k is 

.
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 Recall that the price of the instrument is 
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 Therefore,  
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     where DM  ≡ D / [1 + (/m)], is the modified duration. 

 That is, DM measures the relative change of P as  changes.  

 For a small change of , the relative price change is  

.M

P
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P
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 Duration of a portfolio 

 Consider a portfolio having mb bonds. Let 
j

kPV be the present 

value of the cash flow at time k from Bond j, having price Pj.  

Suppose there is a total of n time periods.  

 Then, the price of the portfolio is 

 1 1 1
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 The duration of the portfolio is  
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where Dj is the duration of bond j and wj ≡ Pj / P is the 

weight of bond j.  

 

 Immunization 

 Immunization is the process of structuring a bond portfolio to 

protect against interest rate risk. 

 Specifically, suppose that a series of future obligations is to 

be met from investment in a bond portfolio. 

 Matching the present value of the obligations with the present 

value of the portfolio allows meeting the obligations if the 

yield (interest rate) does not change. 

 (In this chapter, we assume all bonds have the same yield.) 

 However, if the yield changes, then the present values may 

not match anymore. 

  Immunization approximately solves this problem by 

matching both present value and durations.  

 Immunization implies that the present values of the 

obligations and the bond portfolio will respond identically (to 

the first order) to yield change.  

 Immunization is widely used in practice. 
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 Immunization Example  
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 Graphical Illustration of Immunization (based on Example 

3.10) 

 The following figure gives the present value of the obligation 

(PVO) and of the immunized portfolio (PVPI) as a function of 

the interest rate for Example 3.10 
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 Note that the immunized portfolio has the same value and the 

same slope as the obligation at the initial yield (interest rate) 

value  = 0.09. 

 As a result, as  changes by small amounts around 0.09, the 

values of the obligation and the portfolio remain close.   

 To see the benefit of immunization, consider two alternate 

portfolios: Portfolio 1 having Bond 1 only with value PVP1 

and portfolio 2 with Bond 2 only with value PVP2 .  
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 The number of Bonds i , i =1,2, in Portfolio i is selected so 

that PVO = PVPi  at the initial yield  = 0.09.  

 (Recall that the immunized portfolio has both Bonds 1 and 2 

with weights that match the obligation value and duration.) 

 The following figure show how PVP1 and PVP2 vary as   

changes on the same graph as PVO and PVPI .  
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 Unlike the immunized portfolio, Portfolios 1 and 2 values do 

not follows the value of the obligation closely as  varies. 

 

 Issues with immunization 

 If the yield changes, then the portfolio will not be immunized 

at the new rate.   

 It is therefore desirable to rebalance the portfolio. 
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 Assuming equal yields is problematic as long-maturity bonds 

usually have higher yields than short-maturity bonds.   

 In addition, it is unlikely that yield on all bonds will change 

by the same amount.  

 Chapter 4 considers of bonds with different yields. 

 




