B. Maddah ENMG 602 Introduction Financial Eng’g 11/08/20

The Basic Theory of Interest (2, Chapter 2, Luenberger)

e Comparing alternatives that repeat indefinitely with NPV
» Consider two alternatives that are composed of cycles of cash
flows that repeat indefinitely.
» The two alternatives can be compared in two different ways
(i) Repeat the cycles of alternatives until they terminate at
the same time (i.e., evaluate the two alternatives over the
least common multiplier of cycles; see discussion of
Example 2.4).
(i) Evaluate the NPV of each alternative directly over the
infinite horizon based on a recursive equation (see

Example 2.8).

e Inflation
» Inflation is characterized by an increase in general prices
with time. That is, purchasing power declines with time.
» Inflation can be quantified with an inflation rate f .
> $1 today has the same purchasing power as (1+f)" dollars n
years from now.
» That is, (1+f)" dollars n years from now are worth 1 constant

dollar or one real dollar today.



> If the real interest rate is ro, then the nominal market interest
rate, r, issuchthat1 +r = (1+ro)(1+f), or equivalently,
r=ro+f+rof.
> The real interest rate can be concluded from the nominal rate,

r_r—f
O 14+ f

» See Example 2.10 (text) about the effect of inflation on the
feasibility of a project via the NPV method.

» In general, when applying NPV under inflation, one should
understand whether future cash flows have been estimated
while accounting for inflation.

» Inflated cash flows require the use of the nominal rate r,

while cash flows in real (today’s) dollar require using ro.

e Taxes and depreciation

» Taxes can complicate a cash flow analysis.

» One situation where tax considerations have important
implications is that involving property depreciation.

» The annual depreciation amount is exempt from tax, which
reduces tax on net revenues. (See Example 2.9.)

» While depreciation does not lead to real cash flows, it
reduces income, and accordingly tax which is a real cash

flow.



e Present value of a uniform stream of cash flows
» Consider a cash flow stream extending from year 1 to n such
that the net cash flow at the end of years 1, 2, ..., nis A.

» Then, at an annual interest rate of r, the PV of this stream is
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» E.g., you’re applying for a home loan and the maximum you

> Thatis,

can pay is $1,000/month over 20 years. The bank offered
you an interest rate of 6% per year (compounded monthly).

» Then, the maximum loan you can obtain is

VAR L o _g130m81K
(0.06/12)| (1+0.06/12)®% | 0.005|  (1.005)%* '

» The formula also works in the other direction. E.g., if you
want a $150 K loan at 6% interest, paid monthly over 20
years, then your monthly payment is

1
(1+r)

A=rPV /| 1- =0.005x150/ 1—;240 =$1.075 K
n 1.005
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e Examples

Example 2.1 (A short stream) Consider the cash flow stream (—2, 1,1, 1} when
the periods are years and the interest rate is 10%. The future value is

FV=—=2x (I +1x (1) +1x11+1= 648 (2.1)

Example 2.3 (The old stream) Consider again the cash flow sequence (-2, 1, 1, 1)
discussed earlier. The internal rate of return is found by solving the equation

Oz w2 e € b 0* et

The solution can be found (by trial and error) to be ¢ = 81, and thus IRR = (1 /¢) —
[ == 23,

Note on Example 2.3. This can be done in Excel using the function
RATE(3,1,-2), where the first entry, 3, is the number of years, the second
entry, 1, is the uniform payment, and the third entry, -2, is the initial
investment.  The function RATE() works for an investment with a
uniform revenue only. A more general function is IRR(), which requires
a guess value though. (However, for conventional cash flows, the guess
value can be anything based on the fundamental theorem of IRR.) See

Ex_2.3 Luenberger_2.xlIsx file on the course website.



Example 2.4 (When to cut a tree}  Suppose that you have the opportunity to plant
trees that later can be sold for lumber. This project requires an initial outlay of maney
in order to purchase and plant the seedlings. No other cash flow occurs until the trees
are harvested Howewver, you have a choice as to when to harvest: after [ year or after
2 years. It you harvest after [ year, you get your retuin quickly; but if you wait an
additional year, the trees will have additional growth and the revenue generated from
the sale of the trees will be greater.

We assume that the cash Aow streams associated with these two allernatives are

() (—=1,2) cuteary
(b) (—1,0,3) cut later

We also assume that the prevailing interest rate is 10%. Then the associated net present

values we
fa) NPV =—1-42/11 = §2
{b) NPV = =1 +3/(1.1)* = 1 48

Hence according to the net present value criterion, it is best to cut luter

Example 2.5 (When to cut a tree, continued) Let us use the internal rate of retumn
method to evaluate the twe ree harvesting proposals considered in Example 2 4. The
equations for the internal 1ate of retuin in the 1wo cases are

() =14+ 2c =0

by =143 =

As usual, o = 1/{1 <+ ). These have the following solutions:
I 1

(e} =3 =TT Fo=1.0
V3 L

(b) ¢ 3 |7 ' - !

In other words, for (a), cut early, the imemal rate of retum is 100%, whereas
for (by it is about 70% . Hence under the internal rate of retum criterion, the best
alternative is (w) MNote that this is opposite to the conclusion obtained from the net
present valee criterion.

Discussion of Examples 2.4 and 2.5. So, in Ex 2.4, the NPV criterion
suggests cutting later, while in Ex 2.5 the IRR criterion suggests cutting
earlier. One conclusion is that the NPV and IRR don’t always agree.

If you’re wondering when do they agree, consider the case when the
cutting cycles in Ex 2.4 repeat indefinitely. That is, there are two
strategies, (i) cut every year - plant the tree at the beginning of a year,
and cut it at the end of it, and repeat, and (ii) cut every other year, plant
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the tree at the beginning of a year, and cut two years later, and repeat. To
compare these two strategies, note that they have a common cycle of two
years. (That is, if you look at each two years separately, you’ll see the
same cash flows for each strategy.) For Strategy (i), the cash flows over

two years are (—1,2 — 1,1) and the NPV is PV =-1+1/1.1+2/1.1*> =1.562,
For Strategy (ii), the NPV is 1.48 as in Ex 2.4. So, under this cash flow

repetition scenario, NPV recommends cutting every year, similar to IRR,
and the two criteria agree. For IRR, the results are the same with and
without repetition of cash flows (why?).

To conclude, the IRR criterion implicitly assumes that cash flows repeat
indefinitely. If this is indeed the case, then the two criteria, NPV and
IRR, agree. Otherwise, for one-time only projects, the two criteria may

diverge. The NPV is generally the more acceptable criterion.

Example 2.8 (Machine replacement) A specialized machine essential for a com-'
pany’s operations costs $10,000 and has operating costs of $2,000 the first year. The
operating cost increases by $1,000 each year thereafter. We assume that these oper-
ating costs occur at the end of each year. The interest rate is 10%. How long should
the machine be kept until it is replaced by a new identical machine? Assume that due
to its specialized nature the machine has no salvage value.

replacement machines. This can be done by writing an equation having PV on both
sides. For example, suppose that the machine is replaced every year. Then the cash
flow (in thousands) is (—10, —2) followed by (0, —10, —2) and then (070, —10, —2),
and so forth. Howeva"_f'\?é can write the fotal PV -of-the costs compactly as

PV = 10+ 2/1.1 + PV/1.1

because after the first machine is replaced, the stream from that point looks identical
to the original one, except that this continuing stream starts 1 year later and hence
must be discounted by the effect of 1 year’s interest. The solution to this equation is
PV = 130 or, in our original units, $130,000.

We may do the same thing assuming 2-year replacement, then 3 years, and so
forth. The general approach is based on the equation

1\
Pvtota.l = PVl cycle + (ﬁ) Pvmta]

where k is the length of the basic cycle. This leads easily to Table 2.3.
From the table we see that the smallest present value of cost occurs when the
machine is replaced after 5 years. Hence that is the best replacement policy.




TABLE 2.3
Machine Replacement

Replacement year Present value

1 130,000
2 82,381
3 69,577
4 65,358
5 64,481
6 65,196

The total present value is found for var-
ious replacement frequencies. The best
policy corresponds to the frequency hav-
ing the smallest total present value.

Example 2.9 (Depreciation) Suppose a firm purchases a machine for $10,000. This
machine has a useful life of 4 years and its use generates a cash flow of $3,000 each
year. The machine has a salvage value of $2,000 at the end of 4 years.

The government does not allow the full cost of the machine to be reported
as an expense the first year, but instead requires- that the cost of the machine be
depreciated over its useful life. There are several depreciation methods, each appli-
cable under various circumstances, but for simplicity we shall assume the straight-
line method. In this method a fixed portion of the cost is reported as depreciation
each year. Hence corresponding to a 4-year life, one-fourth of the cost (minus the
estimated salvage value) is reported as an expense deductible from revenue each
year.

If we assume a combined federal and state tax rate of 43%, we obtain the cash
flows, before and after tax, shown in Table 2.4. The salvage value is not taxed {since

it was not depreciated). The present values for the two cash flows (at 10%) are also

TA

shown. Note that in this example tax rules convert an otherwise profitable operation
into an unprofitable one.

BLE 2.4

Cash Flows Before and After Tax

Yea

I i b =

PV

r Before-tax cash flow Depreciation Taxable income Tax After-tax cash flow
- 10,000 —10,000
3,000 2,000 1,000 430 2,570
3,000 2,000 1,600 430 2,570
3,000 2,000 1,600 430 2,570
5,000 2,000 1,000 430 4,570
876 —487




Example 2.10 (Inflation) Suppose that inflation is 4%, the nominal interest rate is
10%, and we have a cash flow of real (or constant) dollars as shown in the second
column of Table 2.5. (It is common to estimate cash flows in constant dollars, rel-
ative to the present, because “ordinary” price increases can then be neglected in a
simple estimation of cash flows.) To determine the present value in real terms we

must use the real rate of interest, which from (2.5) is ry = (10 — 04)/104 =
5.77%.
TABLE 2.5 5000*1.04 5000%*1.04%2

tnflation 7\ /

Year Real cash flow PV @5.77% Nominal cash flow PV/@ﬁJ%

0 - 10,000 - 10,000 - 10,00y - 10,000
1 5,000 4,727 3,20 4,727
2 5,000 4,469 5,408 4,469
3 5,000 4,226 5,624 4,226
4 3,000 2,397 3,510 2,397
Total 5819 5819

Alternatively, we may convert the cash flow to actual (nominal) terms by inflating
thf: figures using the appropriate inflation factors Then we determine the present value
using the nominal interest rate of 10%. Both methods produce the same result.

Interest Rate Real Inflation-adjusted
Cash flow Estimate
Today's Dollars ) (
Inflated ( )



